

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Original article

Novel modifications in the series of *O*-(2-phthalimidoethyl)-*N*-substituted thiocarbamates and their ring-opened congeners as non-nucleoside HIV-1 reverse transcriptase inhibitors

Andrea Spallarossa ^{a,*}, Sara Cesarini ^a, Angelo Ranise ^a, Olga Bruno ^a, Silvia Schenone ^a, Paolo La Colla ^{b,**}, Gabriella Collu ^b, Giuseppina Sanna ^b, Barbara Secci ^b, Roberta Loddo ^b

ARTICLE INFO

Article history:
Received 4 July 2008
Received in revised form 4 September 2008
Accepted 8 September 2008
Available online 30 September 2008

Keywords:
O-(2-Phthalimidoethyl)-Narylthiocarbamates
HIV-1
Non-nucleoside reverse transcriptase
inhibitors
Parallel synthesis
Molecular docking

ABSTRACT

The structure–activity relationships (SARs) of N-aryl-O-(2-phthalimidoethyl)thiocarbamates (C-TCs) and their imide ring-opened congeners (O-TCs) as non-nucleoside HIV-1 reverse transcriptase inhibitors were further investigated. The SAR strategy involved modifications of the N-phenyl ring followed by the hybridization of the most promising N-aryl and O-(2-phthalimidoethyl) substructures. The role of stereochemistry and tert-butyl substitution of the phthalimidoethyl moiety on activity was also investigated. Seventy-six analogues were prepared by parallel solution-phase synthesis. Twenty-two C-TCs displayed nanomolar activity against wild-type HIV-1 and a number of analogues were effective against the Y181C mutant. Compound **56** combined the highest activity so far identified against Y181C (EC₅₀ = 1.3 μ M) with good potency against the K103R mutant (EC₅₀ = 4.8 μ M). Docking simulations helped to rationalize the SARs.

© 2008 Elsevier Masson SAS. All rights reserved.

1. Introduction

HIV-1 reverse transcriptase (RT) is a DNA-dependent polymerase responsible for the production of a double stranded DNA copy of a single stranded viral RNA. RT is essential for HIV-1 life cycle and therefore represents a privileged pharmacological target for anti-AIDS therapy [1]. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a family of selective chemically diverse RT targeting agents. Crystallographic studies have shown that all NNRTIs bind to an allosteric binding pocket (the non-nucleoside binding site, NNBS), located in the vicinity of the active site in the p66 subunit [2–9]. The formation of RT–NNRTI complex results in short- and long-range conformational changes that lock the enzyme in an inactive form [6,10,11].

O-(2-Phthalimidoethyl)-N-arylthiocarbamates (C-TCs) and their imide ring-opened congeners (O-TCs) have been recently identified [12] as a novel class of HIV-1 NNRTIs that are isosterically related to

N-phenethyl-*N'*-thiazolylthiourea (PETT) derivatives (Fig. 1A) [3,13–32]. The synthesis of thiocarbamates more structurally similar to PETT compounds (TC-1, TC-29, Fig. 1A) [33,34] has shed further light on the relationships between these two families of inhibitors. Preliminary efforts [12] to optimize the lead **I** (Fig. 1B) had been mainly based on independent variations of the C-TC portions **a** and **b** (Fig. 1A) and had led to the potent derivatives **II**–**XIII** (Fig. 1B) featured by the following substitution patterns: for portion **a**: (i) methyl substitution at position 4 of the phthalimide phenyl ring, (ii) methyl branching of the ethyl linker on the carbon atom adjacent to the imide nitrogen (hereinafter, β-carbon Fig. 1A); for portion **b**: (i) 4-monosubstitution of the phenyl ring, (ii) replacement of the phenyl ring with a cyclohexyl.

With an aim of acquiring additional elements to maximize the activity against wild-type and drug-resistant RT forms, a new series of C-TCs were designed and prepared by parallel synthesis. First, the *O*-(2-phthalimidoethyl) substructure was kept unmodified while portion **b** was varied by embodying (cyclo)alkyl, allyl and (hetero)arylalkyl groups (C-TCs **1**–**11**, Table 1) or poly-substituted phenyl moieties bearing atoms/groups endowed with different electronic, steric and lipophilic features (F, Cl, Br, CH₃, CF₃, OCH₃, NO₂) arranged in various patterns (C-TCs **12–39**, Table 2). Notably,

^a Dipartimento di Scienze Farmaceutiche, Università di Genova, Viale Benedetto XV 3, I-16132 Genova, Italy

^b Dipartimento di Scienze e Tecnologie Biomediche, Università di Cagliari, Cittadella Universitaria, S.S. 554, Km 4,500, I-09042 Monserrato (Cagliari), Italy

^{*} Corresponding author. Tel.: $+39\ 010\ 353\ 8370$; fax: $+39\ 010\ 353\ 8358$.

^{**} Corresponding author. Tel.: +39 070 675 4147; fax: +39 070 675 4210. E-mail addresses: andrea.spallarossa@unige.it (A. Spallarossa), placolla@unica.it (P. La Colla).

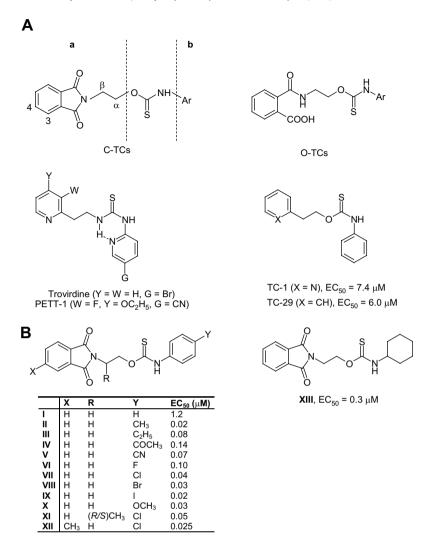


Fig. 1. (A) Chemical structures of thiocarbamates (C-TCs, O-TCs, TC-1, TC-29) [33,34] and PETT derivatives (Trovirdine and PETT-1). (B) Chemical structures and antiretroviral activity of previously synthesized C-TCs I-XIII [12].

the halosubstitution of portion **b** was carried out also in keeping with the paramount importance of aromatic halogen atoms observed for the activity of other class of NNRTIs structurally unrelated to thiocarbamates such as 2,3-diaryl-1,3-thiazolidin-4-(thi)ones [35,36] and indolyl aryl sulphones [37]. Then, the a and **b** substructures emerged as the most promising from the previous work were hybridized for further series expansion (Tables 3 and 4). Thus, the 4-methylphthalimidoethyl moiety was kept constant and combined with N-cyclohexyl (40) or N-4-monosubstitutedphenyl (CH₃, C₂H₅, COCH₃, CN, F, Br, I, OCH₃) (41-48) or N-3,4-disubstitutedphenyl (Cl,Cl; Cl,CH₃; Cl,CF₃; Cl,NO₂) (49-52) rings (Table 3). Moreover, the N-4-methyl- and N-4-chloro-phenyl moieties were coupled with portion a bearing: (i) a tert-butyl group at position 4 of the phthalimido phenyl ring (53 and 54, Table 3); (ii) a methyl branching on the linker β -carbon (pure enantiomers **55**– **57**, Table 4); (iii) methyl groups on both the phthalimide position 4 and the linker β -carbon (racemic **58** and **59**, Table 4).

Finally, O-TCs **60–76** (Table 5) allowed us to evaluate the effects of imide ring opening concomitantly with N-phenyl ring modifications (**60–72**) and β -carbon methyl branching (**73–76**).

2. Chemistry

Preliminarily, the alcohol building blocks (R)- A_2 , (S)- A_2 , A_4 and A_5 (Fig. 2A) were synthesized by condensing the proper anhydride

and aminoalcohol in solvent free conditions (Scheme 1), according to the general procedure previously detailed [12].

Compounds 1-76 were prepared by a convergent two-step solution-phase parallel procedure (Scheme 2) derived from our previously reported protocols [12,33,34]. Briefly, the starting alcohols A_{1-5} (Fig. 2A) were first transformed into their corresponding salts in the presence of sodium hydride in dry THF or DMF (procedures A and B, respectively. See Section 6). The alcoholate was then condensed in situ with isothiocyanates I_{1-49} (Fig. 2B) to afford the mono-sodium thiocarbamates B as single adducts or in mixture with the corresponding di-sodium ring-opened salts SS. After treatment with an aqueous ammonium chloride solution (pH = 8), B and SS were protonated to neutral C-TCs and carboxylate salts S, respectively. C-TCs were separated from the reaction mixture and extracted in parallel with diethyl ether, whereas S were kept in solution. Acidification of the reaction medium with a 2 N HCl solution (pH = 0) caused protonation of **S**, leading to O-TCs which precipitated as free acids and were collected by filtration. Notably, in the synthesis of C-TCs 1-10, 13, 14, 19-25, 27, 29-32, 34, 37, 38, 40-54, 58, 59 the corresponding O-TCs were isolated in trace amounts (yields were less than 0.5-1%, data not shown). In contrast, reaction of A₁ with I₄₄ and (S)-A₂ with I₁₃ afforded only O-TCs **68** and **74**, respectively. Details on the hypothetical mechanism for the concomitant formation of C-TCs and O-TCs and the procedures of separation have been previously reported [12]. The final

Table 1
Cytotoxicity^a and anti-HIV-1 activity of C-TCs 1–11

Compound	R	CC ₅₀ ^b	EC ₅₀ ^c	SI ^d
1	n-Butyl	>100	7.2	>13.9
2	1,1,3,3-Tetramethylbutyl	>100	60	>1.7
3	Cyclopropyl	>100	>100	-
4	Cyclopentyl	>100	11	>9.1
5	Cyclooctyl	>100	0.6	>166.7
6	Cyclohexylmethyl	>100	1.1	>91
7	Allyl	>100	>100	-
8	Benzyl	>100	26	>3.8
9	2-Furylmethyl	>100	>100	-
10	2-Phenylethyl	>100	9.2	>10.9
11	2-(3,4-Dimethoxyphenyl)ethyl	>100	8	>12.5
Trovirdine		60	0.02	3000

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

products were purified by crystallization and the yields (not optimized) ranged from 9% to 73% (see Section 6).

3. Biological results and discussion

The antiretroviral activity of C-TCs (Tables 1–4) and O-TCs (Table 5) was evaluated in MT-4 cell-based assays by assessing the reduction of the HIV-1 induced cytopathogenicity. The results are expressed as EC₅₀ values. In parallel with antiretroviral activity, the TC-induced cytotoxicity was evaluated in mock-infected MT-4 cells and the results are expressed as CC₅₀ values. Trovirdine was used as the reference drug. The most potent derivatives were also tested against the clinically relevant K103R, Y181C and K103N/Y181C resistant mutants [38,39], employing Efavirenz as the reference molecule (Table 6).

Among C-TCs in which the *N*-phenyl ring of the lead **I** was replaced by allyl, (cyclo)alkyl or (hetero)arylalkyl groups (**1–10**, Table 1) only **5** (cyclooctyl) and **6** (cyclohexylmethyl) showed improved potency in comparison with **I** but resulted to be less active than the cyclohexyl derivative **XIII** (compare **5** and **6** with **XIII**).

A complex interplay between the poly-substitution patterns and the steric/electronic properties of the *N*-phenyl substituents affects the antiretroviral properties of **12–39** (Table 2). Thus, the activity trend of the dimethyl **12–14**, difluoro **15–18** and dichloro **19–24** derivatives [2,4-: F (**15**) > CH₃ (**12**) > Cl (**20**); 2,6-: F (**17**) > Cl (**22**) > CH₃ (**13**); 3,5-: CH₃ (**14**) > F (**18**) > Cl (**24**)] suggests that the relative positions of the *N*-phenyl substituents influence the antiretroviral activity more than how their electronic properties do. The difluoro analogues (**15–18**) were similarly effective in the low micromolar range except for **15** (2,4-diF, EC₅₀ = 0.5 μ M) that turned out to be 2.4-fold more potent than the lead **I**. The isosteric F/Cl replacement decreased activity, the bulkier dichloro derivatives being less effective than their difluoro counterparts (**20** vs **15**; **21** vs **16**; **22** vs **17**; **24** vs **18**).

Moreover, except for the difluoro derivatives, the disubstituted C-TCs bearing an *ortho*-substituent appeared to be less active than their 3,4- and 3,5-positional isomers (dimethyl: **14** vs **12**, **13**; dichloro: **23**, **24** vs **19**–**22**; chloro–methyl: **28** vs **25**–**27**; chloro–nitro:

Table 2
Cytotoxicity^a and anti-HIV-1 activity of C-TCs **12–39**

	0			
Compound	X,Y	CC ₅₀ ^b	EC ₅₀ ^c	SI ^d
12	2,4-Me ₂	>100	6	16.7
13	2,6-Me ₂	>100	75	>1.3
14	3,5-Me ₂	>100	4	>25
15	2,4-F ₂	>100	0.5	>200
16	2,5-F ₂	>100	8	>12.5
17	2,6-F ₂	>100	7	>14.3
18	3,5-F ₂	>100	9	>11.1
19	2,3-Cl ₂	>100	30	>3.3
20	2,4-Cl ₂	>100	>100	-
21	2,5-Cl ₂	>100	42	>2.4
22	2,6-Cl ₂	>100	21	>4.8
23	3,4-Cl ₂	>100	0.2	>500
24	3,5-Cl ₂	>100	12	>8
25	4-Cl-2-Me	>100	27	>3.7
26	5-Cl-2-Me	>100	>100	-
27	2-Cl-6-Me	>100	23	>4.3
28	3-Cl-4-Me	>100	0.8	>125
29	2-Cl-4-NO ₂	>100	>100	-
30	4-Cl-3-NO ₂	>100	0.05	>2000
31	4-Br-2-Me	>100	19	>5.3
32	5-Cl-2-OMe	>100	48	>2.1
33	$3,4-(OMe)_2$	>100	3.5	>28.6
34	4-Cl-3-CF ₃	84	8.0	10.5
35	$2,4,6-F_3$	>100	2	>50
36	2,3,4-Cl ₃	>100	11	>9.1
37	2,4,6-Cl ₃	>100	10	>10
38	4-Br-2,6-Me ₂	>100	9	>11.1
39	2,3,5,6-F ₄	>100	10	>10
Trovirdine		60	0.02	3000

 $^{^{\}rm a}$ Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

30 vs **29**). The 3,4-pattern emerged as the most favourable; **23**, **28**, **30**, **33** and **34** were (sub)micromolar HIV-1 inhibitors and in particular **30** (4-Cl-3-NO₂) displayed an EC₅₀ value of 50 nM. The trisubstituted C-TCs **35–38** and the tetrafluoro derivative **39** were active in a narrow micromolar concentration range (EC₅₀ range: 9–11 μ M), except for **35** that resulted to be more active.

The insertion of a methyl group at position 4 of the phthalimide substructure led to the highly active C-TCs 40-52 (Table 3) whose activities were influenced by the nature of portion **b**. Thus, the cyclohexyl derivative 40 displayed a reduced potency in comparison with the majority of its N-aryl substituted congeners. The parasubstituted phenyl analogues 41-48 showed nanomolar potencies $(EC_{50} \text{ range} = 8-70 \text{ nM}) \text{ and } 44 \text{ (4-CN)}, 46 \text{ (4-Br)} \text{ and } 47 \text{ (4-I)}$ resulted as more active than Trovirdine, while 41 (4-Me) and 42 (4-Et) were equipotent to the reference molecule. Compound 46 turned out to be the most active C-TC so far identified. The most potent para-substituted derivatives bear both electron-withdrawing (F, Br, I, CN) and electron-donating (Me, Et, MeO) groups thus confirming a marginal effect of the electronic properties of the N-phenyl substituent on antiretroviral activity. Among the 3,4disubstituted analogues, 51 (4-Cl-3-NO₂) emerged as the most potent derivative ($EC_{50} = 50 \text{ nM}$) and **49** (diCl) and **50** (3-Cl-4-CH₃) showed submicromolar activities. In comparison with their unsubstituted phthalimide-ring analogues, the 4-methyl substituted C-TCs 42-47, 50, and 52 were from 2- to 7-fold more potent whereas 40, 41, 48, 49, and 51 showed equal activity (40 vs

 $[^]b\,$ Compound concentration (µM) required to reduce the viability of mock-infected cells by 50%, as determined by the MTT method.

 $^{^{\}text{c}}$ Compound concentration (µM) required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenecity, as determined by the MTT method.

^d Selectivity index: CC₅₀/EC₅₀ ratio.

 $[^]b$ Compound concentration ($\mu M)$ required to reduce the viability of mock-infected cells by 50%, as determined by the MTT method.

 $^{^{\}rm c}$ Compound concentration (µM) required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenecity, as determined by the MTT method.

^d Selectivity index: CC₅₀/EC₅₀ ratio.

Table 3
Cytotoxicity^a and anti-HIV-1 activity of C-TCs **40–54**

Compound	X	G	CC ₅₀ ^b	EC ₅₀ ^c	SI ^d
40	CH ₃	Cyclohexyl	>100	0.3	>333
41	CH ₃	4-Tolyl	69	0.02	3450
42	CH ₃	4-Ethylphenyl	43	0.02	2150
43	CH ₃	4-Acetylphenyl	>100	0.07	>1429
44	CH ₃	4-Cyanophenyl	57	0.01	5700
45	CH ₃	4-Fluorophenyl	100	0.03	3333
46	CH ₃	4-Bromophenyl	59	0.008	7375
47	CH ₃	4-Iodophenyl	89	0.01	8900
48	CH ₃	4-Methoxyphenyl	>100	0.03	>3333
49	CH ₃	3,4-Dichlorophenyl	50	0.2	250
50	CH ₃	3-Chloro-4-methylphenyl	66	0.4	165
51	CH ₃	4-Chloro-3-nitrophenyl	>100	0.05	>2000
52	CH ₃	4-Chloro-3-trifluoromethylphenyl	43	2.4	17.9
53	$C(CH_3)_3$	4-Tolyl	42	1.5	28
54	$C(CH_3)_3$	4-Chlorophenyl	55	1.2	45.8
Trovirdine			60	0.02	3000

- ^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.
- b Compound concentration (μM) required to reduce the viability of mock-infected cells by 50%, as determined by the MTT method.
- ^c Compound concentration (µM) required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenecity, as determined by the MTT method.
- d Selectivity index: CC₅₀/EC₅₀ ratio.

XIII; 41 vs II; 42 vs III; 43 vs IV; 44 vs V; 45 vs VI; 46 vs VIII; 47 vs IX; 48 vs X; 49 vs 23; 50 vs 28; 51 vs 30; 52 vs 34). The replacement of the methyl substituent with the more sterically demanding *tert*-butyl group caused a dramatic decrease in activity (53 vs 41; 54 vs XII).

As reported in Table 4, C-TC **56** (EC₅₀ = 10 nM) was 2-fold more active than Trovirdine and showed higher potency in comparison with both the S isomer **57** and racemate **XI** (Fig. 1B) [12]. This evidence is consistent with the data reported for PETT derivatives for which the R isomers fit the NNRTI binding pocket much better than S enantiomers [27,28]. The 4-tolyl analogue **55** was 7-fold less active than **56** but still retained activity in the nanomolar concentration range. Moreover, the comparison of **55** and **56** with their corresponding unbranched congeners **II** and **VII** (Fig. 1B) showed opposite effects of the methyl branching on the activity. The double methyl substitution of the linker β -carbon and the phthalimide benzene ring (in an attempt to strengthen the hydrophobic contacts within the highly lipophilic

Table 4Cytotoxicity^a and anti-HIV-1 activity of branched C-TCs **55–59**

Compound	X	Isomer	Y	CC ₅₀ ^b	EC ₅₀ ^c	SI ^d
55	Н	R	CH ₃	76	0.07	1086
56	Н	R	Cl	48	0.01	4800
57	Н	S	Cl	84	0.2	420
58 ^e	CH_3	R/S	CH_3	41	0.1	410
59 ^e	CH_3	R/S	Cl	34	0.06	567
Trovirdine				60	0.02	3000

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

NNRTI binding site) led to compounds **58** and **59**, active in the nanomolar concentration range and with a decreased activity in comparison with their analogues bearing single variation on portion **a** (compare **58** with **41**; **59** with **XI** and **XII**).

In accordance with the results of the previous studies [12], the imide ring opening (O-TCs **60**–**76**, Table 5) caused a decrease in activity (**60** vs **11**; **61** vs **12**; **62** vs **15**; **63** vs **16**; **64** vs **17**; **65** vs **18**; **66** vs **26**; **67** vs **28**; **69** vs **33**; **70** vs **35**; **71** vs **36**; **72** vs **39**; **73** vs **55**; **75** vs **56**; **76** vs **57**). O-TCs **62**, **67**, **70**, **73**, **75** and **76** emerged as the most

Table 5Cytotoxicity^a and anti-HIV-1 activity of O-TCs **60–76**

60 H 2-(3,4-Dimethoxyphenyl)ethyl 61 H 2,4-Dimethylphenyl 62 H 2,4-Difluorophenyl 63 H 2,5-Difluorophenyl 64 H 2,6-Difluorophenyl 65 H 3,5-Difluorophenyl 66 H 5-Chloro-2-methylphenyl 67 H 3-Chloro-4-methylphenyl 68 H 2-Methoxy-5-methylphenyl 69 H 3,4-Dimethoxyphenyl 70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl	CC ₅₀ ^b 100 >100 >100 >100 >100 >100 >100 >100	63 53 3.8 51 45 62	1.6 >1.9 >26.3 >2.0 >2.2 >1.6
61 H 2,4-Dimethylphenyl 62 H 2,4-Difluorophenyl 63 H 2,5-Difluorophenyl 64 H 2,6-Difluorophenyl 65 H 3,5-Difluorophenyl 66 H 5-Chloro-2-methylphenyl 67 H 3-Chloro-4-methylphenyl 68 H 2-Methoxy-5-methylphenyl 69 H 3,4-Dimethoxyphenyl 70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl	>100 >100 >100 >100 >100 >100	53 3.8 51 45 62	>1.9 >26.3 >2.0 >2.2
62 H 2,4-Difluorophenyl 63 H 2,5-Difluorophenyl 64 H 2,6-Difluorophenyl 65 H 3,5-Difluorophenyl 66 H 5-Chloro-2-methylphenyl 67 H 3-Chloro-4-methylphenyl 68 H 2-Methoxy-5-methylphenyl 69 H 3,4-Dimethoxyphenyl 70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl	>100 >100 >100 >100 >100	3.8 51 45 62	>26.3 >2.0 >2.2
63 H 2,5-Difluorophenyl 64 H 2,6-Difluorophenyl 65 H 3,5-Difluorophenyl 66 H 5-Chloro-2-methylphenyl 67 H 3-Chloro-4-methylphenyl 68 H 2-Methoxy-5-methylphenyl 69 H 3,4-Dimethoxyphenyl 70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl	>100 >100 >100	51 45 62	>2.0 >2.2
64 H 2,6-Difluorophenyl 65 H 3,5-Difluorophenyl 66 H 5-Chloro-2-methylphenyl 67 H 3-Chloro-4-methylphenyl 68 H 2-Methoxy-5-methylphenyl 69 H 3,4-Dimethoxyphenyl 70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl	>100 >100	45 62	>2.2
65 H 3,5-Difluorophenyl 66 H 5-Chloro-2-methylphenyl 67 H 3-Chloro-4-methylphenyl 68 H 2-Methoxy-5-methylphenyl 69 H 3,4-Dimethoxyphenyl 70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl	>100	62	
66 H 5-Chloro-2-methylphenyl 67 H 3-Chloro-4-methylphenyl 68 H 2-Methoxy-5-methylphenyl 69 H 3,4-Dimethoxyphenyl 70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl			>1.6
67 H 3-Chloro-4-methylphenyl 68 H 2-Methoxy-5-methylphenyl 69 H 3,4-Dimethoxyphenyl 70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl	>100		
68 H 2-Methoxy-5-methylphenyl 69 H 3,4-Dimethoxyphenyl 70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl	<i>-</i> 100	30	>3.3
69 H 3,4-Dimethoxyphenyl 70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl	>100	4.3	>23.2
70 H 2,4,6-Trifluorophenyl 71 H 2,3,4-Trichlorophenyl	>100	88	>1.1
71 H 2,3,4-Trichlorophenyl	>100	16	>6.2
	>100	7.2	>13.9
72 U 2256 Totrafluorophopul	>100	44	>2.3
72 II 2,3,5,0-Tetralidolophenyi	>100	71	>1.4
73 (<i>R</i>)CH ₃ 4-Tolyl	>100	2.3	>43.5
74 (S)CH ₃ 4-Tolyl	>100	13.8	>7.2
75 (R) CH ₃ 4-Chlorophenyl	>100	0.3	>333
76 (S)CH ₃ 4-Chlorophenyl	>100	2.3	>43.5
Trovirdine	60	0.02	3000

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

 $[^]b$ Compound concentration ($\mu M)$ required to reduce the viability of mock-infected cells by 50%, as determined by the MTT method.

 $^{^{\}text{c}}$ Compound concentration (µM) required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenecity, as determined by the MTT method.

d Selectivity index: CC₅₀/EC₅₀ ratio.

e Tested as a racemic mixture.

 $^{^{\}rm b}$ Compound concentration (μ M) required to reduce the viability of mock-infected cells by 50%, as determined by the MTT method.

^c Compound concentration (µM) required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenecity, as determined by the MTT method.

d Selectivity index: CC₅₀/EC₅₀ ratio.

	X	R
A 1	Н	I
(R)- A 2	Н	CH₃
(S)- A 2	Н	CH₃
A ₃	CH₃	I
A 4	C(CH ₃) ₃	I
A 5	CH₃	CH₃

B Isothiocyanates (Ar-NCS)

	Ar		Ar
l ₁	<i>n</i> -butyl	I ₂₆	2,5-difluorophenyl
l ₂	1,1,3,3-tetramethylbutyl	I ₂₇	2,6-difluorophenyl
l ₃	cyclopropyl	I ₂₈	3,5-difluorophenyl
1 4	cyclopentyl	I ₂₉	2,3-dichlorophenyl
l ₅	cyclohexyl	I ₃₀	2,4-dichlorophenyl
l ₆	cyclooctyl	I ₃₁	2,5-dichlorophenyl
l ₇	cyclohexylmethyl	I ₃₂	2,6-dichlorophenyl
l ₈	allyl	I ₃₃	3,4-dichlorophenyl
l ₉	benzyl	I ₃₄	3,5-dichlorophenyl
I ₁₀	2-furylmethyl	I ₃₅	3,4-dimethoxyphenyl
l ₁₁	2-phenylethyl	I ₃₆	4-chloro-2-methylphenyl
12	2-(3,4-dimethoxyphenyl)ethyl	I ₃₇	5-chloro-2-methylphenyl
l ₁₃	4-tolyl	I ₃₈	2-chloro-6-methylphenyl
I ₁₄	4-ethylphenyl	I ₃₉	3-chloro-4-methylphenyl
l ₁₅	4-acetylphenyl	I ₄₀	2-chloro-4-nitrophenyl
l ₁₆	4-cyanophenyl	I ₄₁	4-chloro-3-nitrophenyl
l ₁₇	4-fluorophenyl	142	4-chloro3-trifluoromethylphen
I 18	4-chlorophenyl	I ₄₃	4-bromo-2-methylphenyl
l ₁₉	4-bromophenyl	144	2-methoxy-5-methylphenyl
l ₂₀	4-iodophenyl	I ₄₅	2,4,6-trifluorophenyl
l ₂₁	4-methoxyphenyl	I ₄₆	2,3,4-trichlorophenyl
122	2,4-dimethylphenyl	147	2,4,6-trichlorophenyl
l ₂₃	2,6-dimethylphenyl	I ₄₈	4-bromo-2,6-dimethylphenyl
l ₂₄	3,5-dimethylphenyl	I ₄₉	2,3,5,6-tetrafluorophenyl
l ₂₅	2,4-difluorophenyl	-	

Fig. 2. Building blocks used.

active derivatives with EC_{50} values in the low micromolar or submicromolar concentration range. As observed for C-TCs, the R enantiomers **73** and **75** were from 6- to 7-fold more active than the corresponding S isomers **74** and **76**.

C-TCs **1**, **2**, **6**, **9–11**, **15–18**, **23**, **28**, **30**, **33**, **35–59** and O-TCs **60**, **62–65**, **70–76** were also screened against K103R, Y181C and

(a)
$$(R)$$
-A₂ (C) A_4

Scheme 1. Reagents and conditions: (a) (2R)-2-aminopropan-1-ol, 140–150 °C, 2 h; (b) (2S)-2-aminopropan-1-ol, 140–150 °C, 2 h; (c) 2-aminoethanol, 175–180 °C, 2 h; (d) (\pm) 2-aminopropan-1-ol, 140–150 °C, 2 h.

Y181C + K103N resistant mutants. All compounds resulted to be inactive against the double mutant. The 12 derivatives listed in Table 6 were active against the Y181C variant. Compounds **30**, **44**, **47**, **55**, **56** and **59** displayed EC₅₀ values lower than 10 μ M. The *R* isomer **56** emerged as the most active analogue so far identified against the Y181C strain. Differently from all the previously prepared C-TCs, **56** showed micromolar activity against the K103R variant in a cell-based assay (EC₅₀ = 4.8 μ M). This observation coupled with the inactivity of **57** (the *S* enantiomer of **56**) suggests a strong effect of stereochemistry on C-TC resistance profile.

4. Molecular docking studies

To rationalize the most relevant SARs, docking studies (Autodock 3.05) [40] were carried out using the X-ray coordinates of RT/C-TC complex (PDB code: 2VG5) [9] as the template structure.

In the RT/**5** docking model, the ligand assumes a U-shaped bioactive conformation consistent with the binding mode of its *N*-aryl substituted analogues [9,12]. Nevertheless, the bulkiness of the cyclooctyl ring prevents the inhibitor from forming the hydrogen bond between the thiocarbamic NH group and Lys101 main chain carbonyl (C(S)N–OC estimated distance: 3.3 Å). This interaction is highly conserved in the C-TC class and in other thiocarbamic and thiourea NNRTIs, as assessed by X-ray crystallography [3,8,9,41]. The lack of this hydrogen bond is partially compensated by the

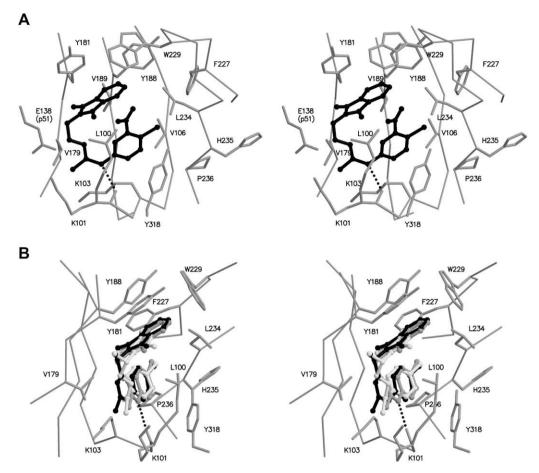
Scheme 2. Reagents and conditions: (a) Ar-NCS (I₁₋₄₉), NaH, dry THF r.t. for 24 h (procedure A) or dried DMF 0-5 °C then r.t. for 24 h; (b) aqueous NH₄Cl; (c) 2 N HCl. The structures of alcohols A1-5 and isothiocyanates I1-49 are listed in Fig. 2.

involvement of the phthalimide moiety in π – π stacking (Tyr181), hydrophobic (Tyr188, Trp229) and van der Waals [Pro95 and Glu138(p51)] interactions. Moreover, further stabilization to the complex is provided by the hydrophobic contacts between the cyclooctyl ring and the side chains of Lys103, Tyr318 and Val106 as well as by van der Waals interactions between the thiocarbamic functionality and the Lys101 backbone atoms.

The RT/**30** complex (Fig. 3A) is stabilized by a hydrogen bond between the NH group and the main chain carbonyl of Lys101 and

Table 6Anti-HIV-1^a activity of C-TCs and O-TCs against the Y181C resistant mutant

Compound	EC ₅₀ ^b
30	2.8
42	16
44	4.5
45	68
47	9
48	44
51	30
55	9
56	1.3
58 ^c	12
59 ^c	4
75	18
Trovirdine	15
EFV	0.02


^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

van der Waals contacts involving the sulphur atom and the Val179 side chain. The oxyethyl linker interacts with the side chains of Leu100 and Glu138(p51), while the phthalimide moiety is involved in π - π stacking interactions with the Tyr181 side chain and in hydrophobic contacts with the Tyr188 and Trp229 residues. Furthermore, one of the imidic oxygen interacts with the Pro95 side chain. The N-phenyl ring hydrophobically contacts the Leu100, Lys103, Val106 and Tyr318 side chains. The chlorine atom establishes van der Waals contacts with the His235 main chain atoms and the nitro group is involved in a network of polar interactions with the Gly190 and Val189 main chains thus providing further stabilization to the complex. The impossibility of 23, 28, 33 and 34 (devoided of a 3-nitro substituent) to form polar interactions with Gly190 and Val189 backbones would structurally rationalize the higher potency of **30** in comparison with the other 3.4-disubstituted analogues. The lack of activity of 29 (positional isomer of 30) would be ascribable to the ortho chlorine atom that prevents the ligand from assuming a bioactive U-shaped conformation within the NNBS and from establishing the hydrogen bond between the thiocarbamic NH group and the Lys101 backbone carbonyl.

Docking simulations carried out on **56** and **57** helped to rationalize the activity gap between the *R* and *S* stereoisomers. Thus, **56** would assume a bioactive conformation very similar to that observed in the X-ray structure of its unbranched analogue **VII** [9] (Fig. 3B). The RT/**56** complex would be mainly stabilized by the hydrogen bond between the NH thiocarbamic group and the Lys101 main chain carbonyl and the π - π stacking interactions between the phthalimide substructure and the Tyr181 side chain. Furthermore, van der Waals contacts would occur between the methyl on the β -carbon and the Val179, Tyr181 and Glu138(p51) side chains. To avoid steric clashes with Val179 side chain, **57** oxyethyl linker

^b Compound concentration (μM) required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenecity, as determined by the MTT method.

^c Tested as a racemic mixture.

Fig. 3. (A) Stereoview of the RT/**30** modeled complex. The ligand is represented as black balls-and-sticks, while the amino acid residues lining the RT non-nucleoside binding site are shown as grey sticks. (B) Stereo diagram showing superposition of C-TCs **56** (modeled structure, black ball-and-stick) and **57** (modeled structure, white ball-and-stick) using RT/ **VII** (grey ball-and-stick) crystallographic complex (PDB code: 2VG5) [9] as reference. Amino acid residues lining the non-nucleoside binding site are shown in sticks model, as observed in the crystallographic structure. Hydrogen bonds are depicted as dotted lines. The programs Molscript [47] and Raster3D [48] were used for drawing the figure.

would assume a different spatial arrangement (Fig. 3B). This would cause distortions of both the thiocarbamic functionality and the *N*-phenyl ring that weaken the hydrogen bond between the NH group and the Lys101 carbonyl thus decreasing the affinity of the inhibitor (C(S)N–OC estimated distances: 2.7 Å and 3.0 Å for **56** and **57**, respectively).

As observed in the RT/XII model [12], in the RT/51 docking complex the methyl group at position 4 of the phthalimide substructure would further stabilize the complex by means of hydrophobic interactions with the side chains of Tyr188 and Trp229. The ability of the 51 nitro group to form polar interactions with the Gly190 and Val189 main chains would rationalize its higher activity in comparison with the other 3,4-disubstituted analogues 49, 50 and 52.

Finally, the structural comparison between RT/**54** and RT/**XII** modeled structures indicates that the *tert*-butyl group would cause a repositioning of the inhibitor within the binding site preventing the thiocarbamic functionality from forming the hydrogen bond with Lys101 and minimizing the interaction of the *N*-phenyl ring with RT.

5. Conclusions

Novel modifications on C-TCs and O-TCs were made to further expand the SAR studies on this class of NNRTIs. The replacement of the *N*-phenyl moiety with (aryl)alkyl portions led to weak anti-HIV-1 inhibitors, except for the cyclooctyl derivative. Among the *N*-phenyl ring poly-substituted patterns, the 3,4-arrangement gave

the best results. The methyl substitution at position 4 of the phthalimide of the phthalimido phenyl ring as well as the $\it R$ methyl branching of the $\it \beta$ -carbon atom led to potent analogues with improved activity against wild-type HIV-1. Furthermore, some derivatives inhibited NNRTI-resistant Y181C variant at low micromolar concentrations and C-TCs **56** resulted effective against both Y181C and K103R mutants. The present study will provide the basis for the design and the synthesis of new analogues more effective against the clinically relevant HIV-1 mutated strains.

6. Experimental section

6.1. Chemistry

6.1.1. General

Alcohol A_1 , isothiocyanates I_{1-49} and the other chemicals were purchased from Chiminord and Aldrich Chemical, Milan (Italy). Syntheses of Trovirdine and A_3 were accomplished according to the published procedures [12,13]. Solvents were of reagent grade. THF was distilled in the presence of sodium. DMF was dried on molecular sieves (5 Å 1/16" pellets). Unless otherwise stated, all commercial reagents were used without further purification. Organic solutions were dried over anhydrous sodium sulphate. Thin layer chromatography (TLC) for routine monitoring of the course of reactions and confirming the purity of analytical samples employed aluminium-backed silica gel plates (Merck DC-Alufolien Kieselgel 60 F_{254}). CHCl₃ or CHCl₃/methanol was used as developing

solvent and detection of spots was made by UV light and/or by iodine vapours. Merck silica gel, 230-400 mesh, was used for chromatography. The parallel solution-phase chemistry was performed by using a 12-Carousel Reaction Station™ (Radleys Discovery Technologies, Italian distributor: StepBio, Bologna). The evaporation of solutions in parallel fashion was performed with an Evaposel™ apparatus (Radleys Discovery Technologies, Italian distributor: StepBio, Bologna) operating at reduced pressure of about 15-20 Torr. Yields were not optimized. Melting points were determined on a Fisher-Johns apparatus and are uncorrected. Optical rotations were measured on a Perkin Elmer 241 MC spectropolarimeter; concentrations are expressed in g/100 mL and the cell length is 1 dm. IR spectra were recorded on a Perkin Elmer 398 spectrometer as KBr discs. ¹H NMR spectra were recorded in CDCl₃ or DMSO- d_6 on a Varian Gemini 200 instrument. Chemical shifts were reported in δ (ppm) units relative to the internal standard tetramethylsilane, and the splitting patterns were described as follows: s (singlet), d (doublet), t (triplet), m (multiplet) and br s (broad singlet). The first order values reported for coupling constants J were given in Hz. Elemental analyses were performed by an EA1110 Elemental Analyser (Fison-Instruments, Milan) and were within \pm 0.4% of the theoretical values.

6.1.2. General procedure for the synthesis of starting alcohols $\mathbf{A_2}$, $\mathbf{A_4}$, and $\mathbf{A_5}$

A mixture of proper aminoalcohol (12 mmol) and proper anhydride (10 mmol) was heated (for A_2 , A_5 : 145–150 °C; for A_4 : 175–180 °C) under stirring for 2 h. After cooling, the reaction mixture was dissolved in CH_2Cl_2 and washed with 2 N HCl (2 × 50 mL). The organic layer was dried and evaporated under reduced pressure to give (R)- A_2 , (S)- A_2 , A_4 , A_5 which were purified by crystallization from the proper solvent mixture.

6.1.2.1. 2-[(1R)-2-Hydroxy-1-methylethyl]-1H-isoindole-1,3(2H)-dione, (R)- A_2 . Yield 69%; mp 84–86 °C (from CH₂Cl₂:Et₂O), lit. [42]: 84–85 °C (from EtOAc:petroleum ether). [α] $_2^{00}$ = -14.7 (c 1.03, CHCl₃), lit. [39]: -14.6 (c 3.2, CHCl₃). IR (KBr) 3490, 1772, 1689 cm⁻¹; ¹H NMR (CDCl₃) δ 1.44 (d, J = 6.6 Hz, 3H, CH₃), 2.67 (br s, 1H, OH, exchangeable), 3.86–4.10 (m, 2H, CH₂), 4.21–4.74 (m, 1H, CH), 7.61–8.01 (m, 4H, arom. H). Anal. Calcd for C₁₁H₁₁NO₃: C, 64.38; H, 5.40; N, 6.83. Found: C, 64.54; H, 5.16; N, 6.84.

6.1.2.2. 2-[(1S)-2-Hydroxy-1-methylethyl]-1H-isoindole-1,3(2H)-dione, (S)- \mathbf{A}_2 . Yield 73%; mp 84–86 °C (from CH₂Cl₂:Et₂O), lit. [42]: 84–85 °C (from EtOAc:petroleum ether). [α] $_2^{00}$ = +15.5 (c 1.05, CHCl₃), lit. [39]: +16.5 (c 2.0, CHCl₃). IR (KBr) 3490, 1772, 1689 cm⁻¹; ¹H NMR (CDCl₃) δ 1.42 (d, J = 6.6 Hz, 3H, CH₃), 3.16 (br s, 1H, OH, exchangeable), 3.84–4.13 (m, 2H, CH₂), 4.21–4.74 (m, 1H, CH), 7.52–8.01 (m, 4H, arom. H). Anal. Calcd for C₁₁H₁₁NO₃: C, 64.38; H, 5.40; N, 6.83. Found: C, 64.19; H, 5.50; N, 7.01.

6.1.2.3. 5-tert-Butyl-2-(2-hydroxyethyl)-1H-isoindole-1,3(2H)-dione, A_4 . Yield 82%; mp 60–62 °C (from Me₂CO). IR (CHCl₃) 3463, 2969, 1771, 1706 cm⁻¹; ¹H NMR (CDCl₃) δ 1.46 (s, 9H, 3 CH₃), 3.47 (br s, 1H, OH, exchangeable), 3.62–4.15 (m, 4H, 2 CH₂), 7.55–8.04 (m, 3H, arom. H). Anal. Calcd for C₁₄H₁₇NO₃: C, 68.00; H, 6.93; N, 5.66. Found: C, 68.26; H, 6.90; N, 5.72.

6.1.2.4. (±) 2-(2-Hydroxy-1-methylethyl)-5-methyl-1H-isoindole-1,3 (2H)-dione, **A**₅. Yield 70%; mp 121–123 °C (from CH₂Cl₂:Et₂O), lit. [42]: 105–107 °C for the *S* isomer (from EtOAc:petroleum ether). IR (KBr) 3497, 2986, 2957, 1764, 1694 cm $^{-1}$; 1 H NMR (CDCl₃) δ 1.41 (s, 3H, CH₃-Phtha), 2.94 (br s, 1H, OH, exchangeable), 3.85–4.10 (m, 2H, CH₂), 4.20–4.63 (m, 1H, CH), 7.39–7.85 (m, 4H, arom. H). Anal. Calcd for C₁₂H₁₃NO₃: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.70; H, 5.70; N, 6.37.

6.1.3. General procedure A for the parallel synthesis of C-TCs 1–11, 15–17, 35–39 and O-TCs 60, 62–64, 70, 72

A 60% sodium hydride dispersion in mineral oil (0.2 g, ~5 mmol) was added in single portion at r.t. to a set of reaction tubes containing dry THF solution (15 mL) of A₁ (0.45 g, 5 mmol). After stirring for 10 min, proper isothiocyanate (5 mmol) was added to each reaction mixture prolonging the stirring at r.t. for 24 h. The solvent of each reaction tube was evaporated by an EvaposelTM apparatus and the crude residue was treated with aqueous ammonium chloride (2.5 g dissolved in 100 mL of water). Each mixture was then transferred into a set of separating funnels and extracted with diethyl ether $(2 \times 40 \text{ mL})$. The combined extracts were dried, filtered through a pad of Florisil (diameter 5×2 cm) and evaporated in parallel by an EvaposelTM apparatus. The crude products were purified by crystallization to afford C-TCs. Following acidification (pH = 0) of the extracted aqueous phases with 2 N HCl, O-TCs separated as solids. The crude solid was filtered off and purified by crystallization.

6.1.3.1. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] butylthiocarbamate, **1**. Yield 28%; mp 64–65 °C (from Me₂CO). IR (KBr) 3249, 2953, 2924, 1772, 1709 cm⁻¹; 1 H NMR (CDCl₃) δ 0.68–0.88 (m, 3H, CH₃), 1.08–1.53 (m, 4H, CH₂CH₂Me), 3.05–3.18 and 3.32–3.47 (m, 4H, 2 CH₂N), 3.86–4.03 (m, 2H, CH₂O), 6.34 and 6.74 (br s, 1H, NH, exchangeable), 7.58–7.82 (m, 4H, arom. H). Anal. Calcd for C₁₅H₁₈N₂O₃S: C, 58.80; H, 5.92; N, 9.14; S, 10.47. Found: C, 58.88; H, 6.19; N, 8.97; S, 10.16.

6.1.3.2. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 1,1,3,3-tetramethylbutylthiocarbamate, **2**. Yield 11%; mp 112–113 °C (from Et₂O:MeOH). IR (KBr) 3232, 2951, 1775, 1716 cm $^{-1}$; 1 H NMR (CDCl₃) δ 0.81 (s, 9H, C(CH₃)₃), 1.24 (s, 6H, C(CH₃)₂), 1.48 (s, 2H, CH₂), 3.98–4.08 (m, 2H, CH₂N), 4.67–4.77 (m, 2H, CH₂O), 6.18 and 6.55 (br s, 1H, NH, exchangeable), 7.62–7.85 (m, 4H, arom. H). Anal. Calcd for C₁₉H₂₆N₂O₃S: C, 62.95; H, 7.23; N, 7.73; S, 8.85. Found: C, 62.88; H, 7.23; N, 7.77; S, 8.72.

6.1.3.3. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] cyclopropylthiocarbamate, **3**. Yield 49%; mp 144–145 °C (from CH₂Cl₂:MeOH). IR (KBr) 3281, 1769, 1712 cm $^{-1}$; 1 H NMR (CDCl₃) δ 0.36–0.77 (m, 4H, 2 CH₂), 2.48–2.63 and 2.73–2.87 (m, 1H, CH), 3.85–4.06 (m, 2H, CH₂N), 4.53–4.72 (m, 2H, CH₂O), 6.47 and 6.89 (br s, 1H, NH, exchangeable), 7.56–7.83 (m, 4H, arom. H). Anal. Calcd for C₁₄H₁₄N₂O₃S: C, 57.92; H, 4.86; N, 9.65; S, 11.04. Found: C, 57.71; H, 4.98; N, 9.53; S, 11.35.

6.1.3.4. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] cyclopentylthiocarbamate, **4.** Yield 52%; mp 115–116 °C (from CH₂Cl₂:MeOH). IR (KBr) 3229, 2954, 2867, 1775, 1723 cm⁻¹; ¹H NMR (CDCl₃) δ 1.19–2.00 (m, 8H, 4 CH₂), 3.86–4.38 (m, 3H, CH and CH₂N), 4.55–4.68 (m, 2H, CH₂O), 6.38 and 6.68 (br s, 1H, NH, exchangeable), 7.58–7.88 (m, 4H, arom. H). Anal. Calcd for C₁₆H₁₈N₂O₃S: C, 60.36; H, 5.70; N, 8.80; S, 10.07. Found: C, 60.42; H, 5.95; N, 8.46; S, 9.94.

6.1.3.5. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] cyclo-octylthiocarbamate,**5** $. Yield 31%; mp 93–95 °C (from Et₂O:MeOH). IR (KBr) 3229, 2928, 1774, 1714 cm<math>^{-1}$; 1 H NMR (CDCl₃) δ 1.25–1.85 (m, 14H, 7 CH₂), 3.70–4.17 (m, 3H, CH and CH₂N), 4.48–4.67 (m, 2H, CH₂O), 6.37 and 6.83 (br s, 1H, NH, exchangeable), 7.55–7.77 (m, 4H, arom. H). Anal. Calcd for C₁₉H₂₄N₂O₃S: C, 63.31; H, 6.71; N, 7.77; S, 8.90. Found: C, 63.11; H, 6.89; N, 7.70; S, 9.06.

6.1.3.6. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] cyclohexylmethylthiocarbamate, **6**. Yield 11%; mp 83–84 °C (from CH₂Cl₂:MeOH). IR (KBr) 3212, 2923, 1772, 1718 cm⁻¹; ¹H NMR

(CDCl₃) δ 0.73–1.22 and 1.48–1.72 (m, 11H, 5 CH₂ and CH), 2.93–3.02 and 3.22–3.33 (m, 2H, CH₂-cyclohexyl), 3.88–4.04 (m, 2H, CH₂N), 4.58–4.68 (m, 2H, CH₂O), 6.31 and 6.67 (br s, 1H, NH, exchangeable), 7.59–7.83 (m, 4H, arom. H). Anal. Calcd for C₁₈H₂₂N₂O₃S: C, 62.40; H, 6.40; N, 8.09; S, 9.26. Found: C, 62.66; H, 6.47; N, 7.89; S, 8.94.

6.1.3.7. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] allylth-iocarbamate, **7**. Yield 56%; mp 112–113 °C (from CH₂Cl₂:MeOH). IR (KBr) 3218, 3054, 2958, 1779, 1715 cm $^{-1}$; 1 H NMR (CDCl₃) δ 3.71–3.81 and 3.88–4.11 (m, 4H, CH₂-allyl and CH₂N), 4.57–4.67 (m, 2H, CH₂O), 4.88–5.22 (m, 2H, CH₂=), 5.53–5.85 (m, 1H, CH=), 6.38 and 6.73 (br s, 1H, NH, exchangeable), 7.58–7.84 (m, 4H, arom. H). Anal. Calcd for C₁₄H₁₄N₂O₃S: C, 57.92; H, 4.86; N, 9.65; S, 11.04. Found: C, 57.99; H, 5.03; N, 9.56; S, 11.07.

6.1.3.8. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] benzylthiocarbamate, **8**. Yield 18%; mp 96–98 °C (from Et₂O:MeOH). IR (KBr) 3336, 2960, 1771, 1708 cm $^{-1}$; 1 H NMR (CDCl₃) δ 3.89–4.02 (m, 2H, CH₂N), 4.31–4.36 and 4.58–4.70 (m, 4H, CH₂O and CH₂Ph), 6.63 and 6.96 (br s, 1H, NH, exchangeable), 7.07–7.27 (m, 5H, arom. H), 7.57–7.77 (m, 4H, arom. H). Anal. Calcd for C₁₈H₁₆N₂O₃S: C, 63.51; H, 4.74; N, 8.23; S, 9.42. Found: C, 63.50; H, 4.72; N, 8.17; S, 9.27.

6.1.3.9. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyll 2-furylmethylthiocarbamate, **9.** Yield 23%; mp 106–107 °C (from Me₂CO:MeOH). IR (KBr) 3340, 1770, 1715 cm⁻¹; ¹H NMR (CDCl₃) δ 3.88–4.05 (m, 2H, CH₂N), 4.27–4.36 and 4.54–4.69 (m, 4H, CH₂O and CH₂-Fur), 6.08–6.13 and 6.17–6.25 (m, 2H, CH(3-fur) and CH(4-fur)), 6.74 and 6.95 (br s, 1H, NH, exchangeable), 7.06–7.09 and 7.23–7.27 (m, 1H, CH(3-fur)), 7.58–7.79 (m, 4H, arom. H). Anal. Calcd for C₁₆H₁₄N₂O₃S: C, 58.17; H, 4.27; N, 8.48; S, 9.71. Found: C, 58.07; H, 4.46; N, 8.28; S, 9.51.

6.1.3.10. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2-phenylethylthiocarbamate, **10**. Yield 41%; mp 92–92 °C (from CH₂Cl₂:MeOH). IR (KBr) 3226, 1774, 1716 cm⁻¹; ¹H NMR (CDCl₃) δ 2.60–2.88 (m, 2H, CH₂Ph), 3.33–3.47 and 3.58–3.74 (m, 2H, CH₂CH₂Ph), 3.84–4.03 (m, 2H, CH₂N), 4.55–4.68 (m, 2H, CH₂O), 6.43 and 6.83 (br s, 1H, NH, exchangeable), 7.00–7.27 (m, 5H, arom. H), 7.56–7.82 (m, 4H, arom. H). Anal. Calcd for C₁₉H₁₈N₂O₃S: C, 64.39; H, 5.12; N, 7.90; S, 9.05. Found: C, 64.27; H, 5.25; N, 7.86; S, 8.70.

6.1.3.11. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2-(3,4-dimethoxyphenyl)ethylthiocarbamate, **11**. Yield 73%; mp 121–123 °C (from CH₂Cl₂:MeOH). IR (KBr) 3222, 1776, 1721 cm⁻¹; ¹H NMR (CDCl₃) δ 2.57–2.66 and 2.69–2.80 (m, 2H, CH₂Ph), 3.31–3.43 and 3.58–3.73 (m, 2H, CH₂CH₂Ph), 3.77, 3.78, 3.80 (s, 6H, 2 CH₃O), 3.88–4.03 (m, 2H, CH₂N), 4.57–4.66 (m, 2H, CH₂O), 6.34 (br s, 1H, NH, exchangeable), 6.57–6.74 (m, 4H, arom. H and NH, exchangeable), 7.58–7.78 (m, 4H, arom. H). Anal. Calcd for C₂₁H₂₂N₂O₅S: C, 60.85; H, 5.35; N, 6.76; S, 7.74. Found: C, 60.79; H, 5.48; N, 6.67; S, 8.22.

6.1.3.12. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,4-difluorophenylthiocarbamate, **15.** Yield 36%; mp 130–132 °C (from CH₂Cl₂:MeOH). IR (KBr) 3260, 1772, 1705 cm⁻¹; ¹H NMR (CDCl₃) δ 3.98–4.25 (m, 2H, CH₂N), 4.71–4.99 (m, 2H, CH₂O), 6.64–7.07 and 7.51–8.06 (m, 7H, arom. H), 8.16 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₂F₂N₂O₃S: C, 56.35; H, 3.34; N, 7.73; S, 8.85. Found: C, 56.54; H, 3.34; N, 7.68; S, 8.54.

6.1.3.13. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,5-difluorophenylthiocarbamate, **16.** Yield 26%; mp 101–103 °C (from Et₂O:MeOH). IR (KBr) 3225, 1773, 1710 cm $^{-1}$; 1 H NMR (CDCl₃) δ 4.03–4.29 (m, 2H, CH₂N), 4.76–5.06 (m, 2H, CH₂O), 6.72–7.15 and 7.63–8.05 (m, 7H, arom. H), 8.32 (br s, 1H, NH, exchangeable). Anal.

Calcd for C₁₇H₁₂F₂N₂O₃S: C, 56.35; H, 3.34; N, 7.73; S, 8.85. Found: C, 56.05; H, 3.20; N, 7.70; S, 8.37.

6.1.3.14. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,6-difluorophenylthiocarbamate, **17**. Yield 47%; mp 204–205 °C (from CH₂Cl₂:MeOH). IR (KBr) 3320, 1771, 1717 cm⁻¹; ¹H NMR (CDCl₃) δ 3.92–4.20 (m, 2H, CH₂N), 4.63–4.93 (m, 2H, CH₂O), 6.62–7.10 and 7.52–8.02 (m, 7H, arom. H), NH, not detected. Anal. Calcd for C₁₇H₁₂F₂N₂O₃S: C, 56.35; H, 3.34; N, 7.73; S, 8.85. Found: C, 56.69; H, 3.53; N, 7.51; S, 8.55.

6.1.3.15. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,4,6-trifluorophenylthiocarbamate, **35**. Yield 44%; mp 159–161 °C (from CH₂Cl₂:MeOH). IR (KBr) 3239, 1773, 1709 cm⁻¹; ¹H NMR (CDCl₃) δ 3.88–4.19 (m, 2H, CH₂N), 4.63–4.83 (m, 2H, CH₂O), 6.46–6.88 and 7.44–7.96 (m, 7H, arom. H and NH, exchangeable). Anal. Calcd for C₁₇H₁₁F₃N₂O₃S: C, 53.68; H, 2.92; N, 7.37; S, 8.43. Found: C, 53.99; H, 3.28; N, 7.15; S, 8.49.

6.1.3.16. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,3,4-trichlorophenylthiocarbamate, **36**. Yield 42%; mp 175–178 °C (from CH₂Cl₂:MeOH). IR (KBr) 3213, 1776, 1722 cm⁻¹; ¹H NMR (CDCl₃) δ 3.96–4.07 (m, 2H, CH₂N), 4.73–4.83 (m, 2H, CH₂O), 7.16–7.30 and 7.63–7.84 (m, 6H, arom. H), 8.17 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₁Cl₃N₂O₃S: C, 47.52; H, 2.58; N, 6.52; S, 7.46. Found: C, 47.50; H, 2.90; N, 6.81; S, 7.34.

6.1.3.17. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,4,6-trichlorophenylthiocarbamate, **37**. Yield 53%; mp 201–202 °C (from CH₂Cl₂:MeOH). IR (KBr) 3262, 1772, 1701 cm⁻¹; ¹H NMR (CDCl₃) δ 3.90–4.20 (m, 2H, CH₂N), 4.59–4.91 (m, 2H, CH₂O), 7.17–7.34 and 7.63–7.94 (m, 6H, arom. H), NH, not detected. Anal. Calcd for C₁₇H₁₁Cl₃N₂O₃S: C, 47.52; H, 2.58; N, 6.52; S, 7.46. Found: C, 47.80; H, 2.88; N, 6.33; S, 7.48.

6.1.3.18. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-bromo-2,6-dimethylphenylthiocarbamate, **38.** Yield 38%; mp 150–152 °C (from Et₂O:MeOH). IR (KBr) 3483, 3177, 1764, 1697 cm⁻¹; 1 H NMR (CDCl₃) δ 2.05 (s, 3H, CH₃), 2.17 (s, 3H, CH₃), 3.78–4.23 (m, 2H, CH₂N), 4.57–5.01 (m, 2H, CH₂O), 6.92–7.32 and 7.65–7.95 (m, 6H, arom. H), 8.13 (br s, 1H, NH exchangeable). Anal. Calcd for C₁₉H₁₇BrN₂O₃S: C, 52.66; H, 3.95; N, 6.46; S, 7.40. Found: C, 52.43; H, 4.28; N, 6.45; S, 7.30.

6.1.3.19. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,3,5,6-tetrafluorophenylthiocarbamate, **39.** Yield 44%; mp 150–152 °C (from Et₂O:MeOH). IR (KBr) 3224, 1773, 1706 cm⁻¹; 1 H NMR (CDCl₃) δ 3.88–4.01 (m, 2H, CH₂N), 4.63–4.95 (m, 2H, CH₂O), 6.87–7.28 and 7.69–7.96 (m, 5H, arom. H), 8.12 (br s, 1H, NH exchangeable). Anal. Calcd for C₁₇H₁₀F₄N₂O₃S: C, 51.26; H, 2.53; N, 7.03; S, 8.05. Found: C, 51.56; H, 2.94; N, 6.94; S, 7.85.

6.1.3.20. 2-[({{2-[({{[2-(3,4-Dimethoxyphenyl)ethyl]amino}carbonothioyl)} oxy]ethyl}amino)carbonyl]benzoic acid, **60**. Yield 23%; mp 166–168 °C (from Me₂CO:MeOH). IR (KBr) 3277, 1692, 1642 cm⁻¹; ¹H NMR (DMSO) δ 2.55–2.74 (m, 2H, CH₂Ph), 3.19–3.31 (m, 2H, CH₂CH₂Ph), 3.35–3.52 (m, 2H, CH₂N), 3.60 and 3.63 (s, 3H, OCH₃), 3.61 and 3.65 (s, 3H, OCH₃), 6.56–6.83, 7.27–7.53 and 7.63–7.72 (m, 7H, arom. H), 8.40 (br s, 1H, CONH, exchangeable), 9.15 (br s, 1H, CSNH, exchangeable), 12.76 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₂₁H₂₄N₂O₆S: C, 58.32; H, 5.59; N, 6.48; S, 7.41. Found: C, 58.08; H, 5.63; N, 6.59; S, 7.65.

6.1.3.21. 2-({[2-({[(2,4-Difluorophenyl)amino]carbonothioyl}ox-y)ethyl]amino}carbonyl)benzoic acid, **62**. Yield 23%; mp 124–126 °C (from Me₂CO). IR (KBr) 3298, 1678, 1635 cm $^{-1}$; 1 H NMR (DMSO)

 δ 3.13–3.62 (m, 2H, CH₂N), 4.37–4.57 (m, 2H, CH₂O), 6.84–7.81 (m, 7H, arom. H), 8.24 and 8.42 (br s, 1H, CONH, exchangeable), 10.67 and 10.93 (br s, 1H, CSNH, exchangeable), 12.88 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₇H₁₄F₂N₂O₄S: C, 53.68; H, 3.71; N, 7.36; S, 8.43. Found: C, 53.42; H, 3.79; N, 7.40; S, 8.45.

6.1.3.22. 2-({[2-({[(2,5-Difluorophenyl)amino]carbonothioyl})oxy)-ethyl]amino}carbonyl)benzoic acid, **63**. Yield 9%; mp 144–146 °C (from Me₂CO:MeOH). IR (KBr) 3341, 3178, 1722 cm⁻¹; ¹H NMR (DMSO) δ 3.61–4.02 (m, 2H, CH₂N), 4.15–4.39 (m, 2H, CH₂O), 7.37–8.08 (m, 7H, arom. H), 8.44 (br s, 1H, CONH, exchangeable), 10.92 (br s, 1H, CSNH, exchangeable), 12.56 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₇H₁₄F₂N₂O₄S: C, 53.68; H, 3.71; N, 7.36; S, 8.43. Found: C, 53.79; H, 3.79; N, 7.20; S, 8.45.

6.1.3.23. 2-({[2-({[(2,6-Difluorophenyl)amino]carbonothioyl}oxy)-ethyl]amino}carbonyl)benzoic acid, **64.** Yield 30%; mp 170–172 °C (from Me₂CO:MeOH). IR (KBr) 3345, 3180, 1723 cm⁻¹; ¹H NMR (DMSO) δ 3.22–3.62 (m, 2H, CH₂N), 4.34–4.57 (m, 2H, CH₂O), 7.01–7.78 (m, 7H, arom. H), 8.25 and 8.48 (br s, 1H, CSNH, exchangeable), 10.61 and 10.91 (br s, 1H, CONH, exchangeable), 12.90 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₇H₁₄F₂N₂O₄S: C, 53.68; H, 3.71; N, 7.36; S, 8.43. Found: C, 53.63; H, 3.51; N, 7.21; S, 8.21.

6.1.3.24. 2-({[2-({[(2,4,6-Trifluorophenyl)amino]carbonothioyl}oxy)-ethyl]amino}carbonyl)benzoic acid, **70**. Yield 22%; mp 143–145 °C (from Me₂CO:MeOH). IR (KBr) 3340, 3162, 1724 cm $^{-1}$; 1 H NMR (DMSO) δ 3.27–3.62 (m, 2H, CH₂N), 4.37–4.58 (m, 2H, CH₂O), 7.10–7.88 (m, 6H, arom. H), 8.26 and 8.48 (br s, 1H, CONH, exchangeable), 10.60 and 10.83 (br s, 1H, CSNH, exchangeable), 12.95 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₇H₁₃F₃N₂O₄S: C, 51.26; H, 3.29; N, 7.03; S, 8.05. Found: C, 51.42; H, 3.01; N, 6.93; S, 8.26.

6.1.3.25. 2-({[2-({[[2,3,5,6-Tetrafluorophenyl)amino]carbonothioyl}-oxy)ethyl]amino}carbonyl)benzoic acid, **72.** Yield 10%; mp 173–175 °C (from Me₂CO). IR (KBr) 3340, 3162, 1724 cm⁻¹; ¹H NMR (DMSO) δ 3.18–3.62 (m, 2H, CH₂N), 4.34–4.58 (m, 2H, CH₂O), 7.11–7.93 (m, 5H, arom. H), 8.38 (br s, 1H, CONH, exchangeable), 11.05 (br s, 1H, CSNH, exchangeable), 12.86 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₇H₁₂F₄N₂O₄S: C, 49.04; H, 2.91; N, 6.73; S, 7.70. Found: C, 49.17; H, 3.09; N, 6.80; S, 7.62.

6.1.4. General procedure B for the parallel synthesis of C-TCs **12–14**, **18–34**, **40–59** and O-TCs **61**, **65–69**, **71**, **73–76**

To each ice-cooled reaction tube containing a stirred dried DMF solution (15 mL) of the proper alcohol (5 mmol) and the proper isothiocyanate (5 mmol), a 60% sodium hydride dispersion in mineral oil (0.2 g, ~ 5 mmol) was added in a single portion. Each reaction mixture was stirred at r.t. for 24 h. Upon treatment with aqueous ammonium chloride (2.5 g dissolved in 100 mL of water), C-TCs separated as oils or solids. Each reaction mixture was transferred into a set of separating funnels and extracted with diethyl ether (2 \times 40 mL). The pooled organic phases were washed with water (4 \times 20 mL), dried and evaporated in parallel by an Evaposel apparatus. The crude products were purified by crystallization. Upon acidification (pH = 0) of the reaction mother liquors with 2 N HCl, O-TCs precipitated and were filtered off in parallel. Then, the crude solids were purified by crystallization.

6.1.4.1. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,4-di-methylphenylthiocarbamate, **12**. Yield 15%; mp 156–158 °C (from CH₂Cl₂:EtOH). IR (KBr) 3337, 1770, 1717, 1702 cm⁻¹; 1 H NMR (CDCl₃) δ 2.18 (s, 3H, CH₃), 2.25 (s, 3H, CH₃), 4.05 (t, J = 6.0 Hz, 2H, CH₂N), 4.83 (t, J = 6.0 Hz, 2H, CH₂O), 6.81–7.16 and 7.71–7.93 (m, 7H, arom. H), 8.18 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₉H₁₈N₂O₃S: C, 64.39; H, 5.12; N, 7.90; S, 9.05. Found: C, 64.19; H, 5.32; N, 7.76; S, 8.81.

6.1.4.2. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,6-dimethylphenylthiocarbamate, **13**. Yield 23%; mp 173–175 °C (from CH₂Cl₂:EtOH). IR (KBr) 3291, 1769, 1713 cm⁻¹; ¹H NMR (CDCl₃) δ 2.10 (s, 3H, CH₃), 2.21 (s, 3H, CH₃), 3.96–4.22 (m, 2H, CH₂N), 4.59–5.01 (m, 2H, CH₂O), 6.81–7.22 and 7.67–7.94 (m, 7H, arom. H), 8.12 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₉H₁₈N₂O₃S: C, 64.39; H, 5.12; N, 7.90; S, 9.05. Found: C, 64.56; H, 5.04; N, 7.91; S, 8.88.

6.1.4.3. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3,5-dimethylphenylthiocarbamate, **14.** Yield 31%; mp 153–155 °C (from CH₂Cl₂:EtOH). IR (KBr) 3309, 1770, 1705 cm $^{-1}$; ¹H NMR (CDCl₃) δ 2.23 (s, 6H, 2 CH₃), 4.10 (t, J = 6.0 Hz, 2H, CH₂N), 4.86 (t, J = 6.0 Hz, 2H, CH₂O), 6.68–7.03 and 7.71–8.01 (m, 7H, arom. H), 8.39 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₉H₁₈N₂O₃S: C, 64.39; H, 5.12; N, 7.90; S, 9.05. Found: C, 64.36; H, 5.28; N, 7.87; S, 8.76.

6.1.4.4. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3,5-difluorophenylthiocarbamate, **18**. Yield 47%; mp 156–158 °C (from Et₂O:EtOH). IR (KBr) 3308, 1777, 1715 cm $^{-1}$; 1 H NMR (CDCl₃) δ 3.95–4.28 (m, 2H, CH₂N), 4.73–5.02 (m, 2H, CH₂O), 6.31–6.79, 6.93–7.00 and 7.62–7.99 (m, 7H, arom. H), 11.04 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₂F₂N₂O₃S: C, 56.35; H, 3.34; N, 7.73; S, 8.85. Found: C, 56.10; H, 3.58; N, 7.67; S, 8.93.

6.1.4.5. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,3-dichlorophenylthiocarbamate, **19**. Yield 36%; mp 119–121 °C (from CH₂Cl₂:MeOH). IR (KBr) 3342, 1774, 1716 cm⁻¹; ¹H NMR (CDCl₃) δ 4.10 (t, J = 6.0 Hz, 2H, CH₂N), 4.87 (t, J = 6.0 Hz, 2H, CH₂O), 7.01–7.32 and 7.58–7.98 (m, 7H, arom. H), 8.15 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₂Cl₂N₂O₃S: C, 51.66; H, 3.06; N, 7.09; S, 8.11. Found: C, 51.51; H, 3.34; N, 6.95; S, 7.93.

6.1.4.6. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,4-di-chlorophenylthiocarbamate, **20**. Yield 22%; mp 154–155 °C (from CH₂Cl₂:MeOH). IR (KBr) 3337, 1760, 1703 cm⁻¹; ¹H NMR (DMSO) δ 3.94 (t, J=6.0 Hz, 2H, CH₂N), 4.73 (t, J=6.0 Hz, 2H, CH₂O), 7.22–7.54 and 7.79–8.05 (m, 7H, arom. H), 10.38 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₂Cl₂N₂O₃S: C, 51.66; H, 3.06; N, 7.09; S, 8.11. Found: C, 51.66; H, 3.07; N, 7.11; S, 8.00.

6.1.4.7. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,5-dichlorophenylthiocarbamate, **21**. Yield 57%; mp 138–140 °C (from CH₂Cl₂:EtOH). IR (KBr) 3167, 1776, 1716 cm⁻¹; ¹H NMR (CDCl₃) δ 4.11 (t, J = 6.0 Hz, 2H, CH₂N), 4.90 (t, J = 6.0 Hz, 2H, CH₂O), 7.01–7.46 and 7.71–8.11 (m, 7H, arom. H), 8.43 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₂Cl₂N₂O₃S: C, 51.66; H, 3.06; N, 7.09; S, 8.11. Found: C, 51.54; H, 3.35; N, 6.92; S, 7.98.

6.1.4.8. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,6-dichlorophenylthiocarbamate, **22**. Yield 37%; mp 200–202 °C (from CH₂Cl₂:EtOH). IR (KBr) 3308, 1770, 1713 cm⁻¹; ¹H NMR (CDCl₃) δ 3.82–4.19 (m, 2H, CH₂N), 4.55–4.97 (m, 2H, CH₂O), 7.03–7.49 and 7.79–7.98 (m, 7H, arom. H), 9.31 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₂Cl₂N₂O₃S: C, 51.66; H, 3.06; N, 7.09; S, 8.11. Found: C, 51.49; H, 3.39; N, 6.79; S, 7.90.

6.1.4.9. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3,4-dichlorophenylthiocarbamate, **23**. Yield 49%; mp 164–166 °C (from CH₂Cl₂:MeOH). IR (KBr) 3380, 1778, 1710 cm⁻¹; ¹H NMR (DMSO) δ 4.09 (t, J = 6.0 Hz, 2H, CH₂N), 4.89 (t, J = 6.0 Hz, 2H, CH₂O), 7.07–8.05 (m, 7H, arom. H), 10.37 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₂Cl₂N₂O₃S: C, 51.66; H, 3.06; N, 7.09; S, 8.11. Found: C, 51.74; H, 3.14; N, 7.13; S, 8.13.

6.1.4.10. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3,5-di-chlorophenylthiocarbamate, **24**. Yield 53%; mp 139–140 °C (from

CH₂Cl₂:MeOH). IR (KBr) 3180, 1775, 1710 cm⁻¹; ¹H NMR (DMSO) δ 3.97 (t, J = 6.0 Hz, 2H, CH₂N), 4.76 (t, J = 6.0 Hz, 2H, CH₂O), 7.03–7.50 and 7.65–8.13 (m, 7H, arom. H), 10.32 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₂Cl₂N₂O₃S: C, 51.66; H, 3.06; N, 7.09; S, 8.11. Found: C, 51.49; H, 3.25; N, 6.74; S, 7.87.

6.1.4.11. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-y)ethyl] 4-chloro-2-methylphenylthiocarbamate, **25**. Yield 38%; mp 113–115 °C (from CH₂Cl₂:MeOH). IR (KBr) 3330, 1765, 1690 cm⁻¹; ¹H NMR (CDCl₃) δ 2.19 (s, 3H, CH₃), 4.06 (t, J = 6.0 Hz, 2H, CH₂N), 4.80 (t, J = 6.0 Hz, 2H, CH₂O), 6.88–7.39 and 7.64–8.28 (m, 7H, arom. H), 10.37 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₅ClN₂O₃S: C, 57.68; H, 4.03; N, 7.47; S, 8.55. Found: C, 57.64; H, 4.00; N, 7.51; S, 8.28.

6.1.4.12. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 5-chloro-2-methylphenylthiocarbamate, **26**. Yield 36%; mp 125–127 °C (from CH₂Cl₂:MeOH). IR (KBr) 3175, 1775, 1712 cm⁻¹; ¹H NMR (DMSO) δ 2.07 (s, 3H, CH₃), 3.95 (t, J = 6.0 Hz, 2H, CH₂N), 4.71 (t, J = 6.0 Hz, 2H, CH₂O), 7.03–7.32 and 7.78–8.10 (m, 7H, arom. H), 10.35 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₅ClN₂O₃S: C, 57.68; H, 4.03; N, 7.47; S, 8.55. Found: C, 57.98; H, 4.37; N, 7.15; S, 8.40.

6.1.4.13. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2-chloro-6-methylphenylthiocarbamate, **27**. Yield 35%; mp 173–175 °C (from CH₂Cl₂:EtOH). IR (KBr) 3317, 1769, 1713 cm⁻¹; ¹H NMR (CDCl₃) δ 2.09–2.41 (m, 3H, CH₃), 3.78–4.23 (m, 2H, CH₂N), 4.59–5.01 (m, 2H, CH₂O), 6.91–7.39 and 7.61–8.05 (m, 7H, arom. H), 8.34 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₅ClN₂O₃S: C, 57.68; H, 4.03; N, 7.47; S, 8.55. Found: C, 57.81; H, 4.29; N, 7.21; S, 8.26.

6.1.4.14. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3-chloro-4-methylphenylthiocarbamate, **28.** Yield 12%; mp 143–145 °C (from CH₂Cl₂:MeOH). IR (KBr) 3290, 1772, 1700 cm⁻¹; 1 H NMR (CDCl₃) δ 2.29 (s, 3H, CH₃), 4.11 (t, J = 6.0 Hz, 2H, CH₂N), 4.88 (t, J = 6.0 Hz, 2H, CH₂O), 6.93–8.47 (m, 7H, arom. H), 10.21 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₅ClN₂O₃S: C, 57.68; H, 4.03; N, 7.47; S, 8.55. Found: C, 57.98; H, 4.18; N, 7.33; S, 8.43.

6.1.4.15. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2-chloro-4-nitrophenylthiocarbamate, **29**. Yield 45%; mp 142–143 °C (from CH₂Cl₂:MeOH). IR (KBr) 3387, 1770, 1705 cm⁻¹; ¹H NMR (DMSO) δ 3.94 (t, J=6.0 Hz, 2H, CH₂N), 4.20 (t, J=6.0 Hz, 2H, CH₂O), 7.44–8.27 (m, 7H, arom. H), 10.36 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₂ClN₃O₅S: C, 50.32; H, 2.98; N, 10.35; S, 7.90. Found: C, 50.43; H, 2.88; N, 10.32; S, 7.97.

6.1.4.16. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chloro-3-nitrophenylthiocarbamate, **30**. Yield 52%; mp 205–206 °C (from CH₂Cl₂:MeOH). IR (KBr) 3190, 1770, 1710 cm⁻¹; ¹H NMR (DMSO) δ 4.01 (t, J = 6.0 Hz, 2H, CH₂N), 4.72 (t, J = 6.0 Hz, 2H, CH₂O), 7.45–8.18 (m, 7H, arom. H), 10.35 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₇H₁₂ClN₃O₅S: C, 50.32; H, 2.98; N, 10.35; S, 7.90. Found: C, 50.55; H, 2.81; N, 10.45; S, 7.55.

6.1.4.17. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-bromo-2-methylphenylthiocarbamate, **31**. Yield 43%; mp 111–113 °C (from CH₂Cl₂:MeOH). IR (KBr) 3325, 1768, 1695 cm⁻¹; ¹H NMR (CDCl₃) δ 2.50 (s, 3H, CH₃), 4.41 (t, J = 6.0 Hz, 2H, CH₂N), 4.84 (t, J = 6.0 Hz, 2H, CH₂O), 6.99–7.38 and 7.97–8.08 (m, 7H, arom. H), 9.34 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₅BrN₂O₃S: C, 51.56; H, 3.61; N, 6.68; S, 7.65. Found: C, 51.27; H, 3.43; N, 6.73; S, 7.77.

6.1.4.18. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 5-chloro-2-methoxyphenylthiocarbamate, **32**. Yield 29%; mp 126–127 °C (from CH₂Cl₂:MeOH). IR (KBr) 3375, 1775, 1712 cm⁻¹; ¹H NMR (CDCl₃) δ 4.48 (s, 3H, CH₃O), 4.16 (t, J = 6.0 Hz, 2H, CH₂N), 4.92

(t, J = 6.0 Hz, 2H, CH₂O), 6.68–7.10 and 7.55–7.98 (m, 7H, arom. H), 10.12 (br s, 1H, NH, exchangeable). Anal. Calcd for $C_{18}H_{15}CIN_2O_4S$: C, 55.32; H, 3.87; N, 7.17; S, 8.20. Found: C, 55.10; H, 3.85; N, 7.14; S, 8.21.

6.1.4.19. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3,4-dimethoxyphenylthiocarbamate, **33**. Yield 24%; mp 99–101 °C (from CH₂Cl₂:EtOH). IR (KBr) 3337, 1771, 1705 cm⁻¹; ¹H NMR (CDCl₃) δ 3.86 (s, 6H, 2 OCH₃), 4.08 (t, J=6.0 Hz, 2H, CH₂N), 4.84 (t, J=6.0 Hz, 2H, CH₂O), 6.63–6.96 and 7.68–7.96 (m, 7H, arom. H), 8.20 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₉H₁₈N₂O₅S: C, 59.06; H, 4.70; N, 7.25; S, 8.30. Found: C, 59.32; H, 5.06; N, 7.23; S, 8.64.

6.1.4.20. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chloro-3-trifluoromethylphenylthiocarbamate, **34.** Yield 43%; mp 163–165 °C (from CH₂Cl₂:EtOH). IR (KBr) 3193, 1773, 1718 cm⁻¹; ¹H NMR (CDCl₃) δ 4.11 (t, J = 6.0 Hz, 2H, CH₂N), 4.89 (t, J = 6.0 Hz, 2H, CH₂O), 7.27–7.52 and 7.62–7.98 (m, 7H, arom. H), 8.14 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₂F₃N₂O₃S: C, 50.42; H, 2.82; N, 6.53; S, 7.48. Found: C, 50.42; H, 3.07; N, 6.66; S, 7.58.

6.1.4.21. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] cyclohexylthiocarbamate, **40**. Yield 20%; mp 146–147 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3230, 2926, 1776, 1720 cm⁻¹; ¹H NMR (CDCl₃) δ 0.82–2.20 (m, 10H, 5 CH₂-cyclohexyl), 2.52 (s, 3H, CH₃), 3.21–3.31 (m, 1H, CH), 4.07 (t, J=6.0 Hz, 2H, CH₂N), 4.70 (t, J=6.0 Hz, 2H, CH₂O), 7.32 (br s, 1H, NH, exchangeable), 7.42–7.90 (m, 3H, arom. H). Anal. Calcd for C₁₈H₂₂N₂O₃S: C, 62.40; H, 6.40; N, 8.09; S, 9.25. Found: C, 62.47; H, 6.57; N, 7.97; S, 9.60.

6.1.4.22. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-ethyl] 4-methylphenylthiocarbamate, **41**. Yield 37%; mp 149–151 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3310, 1767, 1699 cm⁻¹; ¹H NMR (CDCl₃) δ 2.28 (s, 3H, CH₃), 2.48 (s, 3H, CH₃), 4.04 (t, J = 6.0 Hz, 2H, CH₂N), 4.85 (t, J = 6.0 Hz, 2H, CH₂O), 6.88–7.27 and 7.50–7.84 (m, 7H, arom. H), 8.32 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₉H₁₈N₂O₃S: C, 64.39; H, 5.12; N, 7.90; S, 9.05. Found: C, 64.65; H, 5.25; N, 7.86; S, 9.31.

6.1.4.23. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-ethylphenylthiocarbamate, **42**. Yield 39%; mp 149–151 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3311, 1771, 1701 cm⁻¹; ¹H NMR (CDCl₃) δ 1.17 (t, J = 6.0 Hz, 3H, CH₃-ethyl), 2.37–2.75 (m, 5H, CH₂ and CH₃), 4.04 (t, J = 6.0 Hz, 2H, CH₂N), 4.85 (t, J = 6.0 Hz, 2H, CH₂O), 7.07–7.86 (m, 7H, arom. H), 8.72 (br s, 1H, NH, exchangeable). Anal. Calcd for C₂₀H₂₀N₂O₃S: C, 65.20; H, 5.47; N, 7.60; S, 8.70. Found: C, 65.24; H, 5.37; N, 7.53; S, 8.95.

6.1.4.24. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-ethyl] 4-acetylphenylthiocarbamate, **43**. Yield 22%; mp 173–175 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3290, 1760, 1721, 1700 cm⁻¹; ^1H NMR (CDCl₃) δ 2.50 (s, 3H, COCH₃), 2.55 (s, 3H, CH₃), 4.09 (t, J=6.0 Hz, 2H, CH₂N), 4.89 (t, J=6.0 Hz, 2H, CH₂O), 7.17–8.02 (m, 7H, arom. H), 9.03 (br s, 1H, NH, exchangeable). Anal. Calcd for C₂₀H₁₈N₂O₄S: C, 62.81; H, 4.74; N, 7.33; S, 8.38. Found: C, 62.53; H, 4.86; N, 7.44; S, 8.07.

6.1.4.25. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-cyanophenylthiocarbamate, **44**. Yield 40%; mp 180–182 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3184, 2226, 1770, 1712, 1702 cm⁻¹; 1 H NMR (CDCl₃) δ 2.51 (s, 3H, CH₃), 4.09 (t, J = 6.0 Hz, 2H, CH₂N), 4.86 (t, J = 6.0 Hz, 2H, CH₂O), 7.30–7.84 (m, 7H, arom. H), 10.32 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₉H₁₅N₃O₃S: C, 62.45; H, 4.14; N, 11.50; S, 8.77. Found: C, 62.31; H, 4.40; N, 11.32; S, 8.57.

6.1.4.26. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) ethyl] 4-fluorophenylthiocarbamate, **45**. Yield 40%; mp 143–145 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3242, 1772, 1717 cm⁻¹; ¹H NMR (CDCl₃) δ 2.47 (s, 3H, CH₃), 4.01 (t, J = 6.0 Hz, 2H, CH₂N), 4.82 (t, J = 6.0 Hz, 2H, CH₂O), 6.73–7.73 (m, 7H, arom. H), 8.55 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₅FN₂O₃S: C, 60.33; H, 4.22; N, 7.82; S, 8.95. Found: C, 60.42; H, 4.45; N, 7.83; S, 8.75.

6.1.4.27. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) ethyl] 4-bromophenylthiocarbamate, **46**. Yield 12%; mp 174–176 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3299, 1767, 1698 cm⁻¹; ¹H NMR (CDCl₃) δ 2.50 (s, 3H, CH₃), 3.81–4.13 (m, 2H, CH₂N), 4.69–4.96 (m, 2H, CH₂O), 7.18–7.80 (m, 7H, arom. H), 11.13 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₅BrN₂O₃S: C, 51.56; H, 3.61; N, 6.68; S, 7.65. Found: C, 51.47; H, 3.89; N, 6.84; S, 7.31.

6.1.4.28. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-iodophenylthiocarbamate, **47**. Yield 37%; mp 183–185 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3202, 1772, 1718 cm⁻¹; ¹H NMR (CDCl₃) δ 2.53 (s, 3H, CH₃), 4.07 (t, J = 6.0 Hz, 2H, CH₂N), 4.85 (t, J = 6.0 Hz, 2H, CH₂O), 7.60–7.77 (m, 7H, arom. H), 8.32 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₅IN₂O₃S: C, 46.37; H, 3.24; N, 6.01; S, 6.88. Found: C, 46.10; H, 3.58; N, 5.95; S, 6.58.

6.1.4.29. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) ethyl] 4-methoxyphenylthiocarbamate, **48**. Yield 39%; mp 151–153 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3311, 1768, 1701 cm⁻¹; ¹H NMR (CDCl₃) δ 2.50 (s, 3H, CH₃), 3.77 (s, 3H, OCH₃), 4.05 (t, J = 6.0 Hz, 2H, CH₂N), 4.84 (t, J = 6.0 Hz, 2H, CH₂O), 6.59–7.76 (m, 7H, arom. H), 8.26 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₉H₁₈N₂O₄S: C, 61.62; H, 4.90; N, 7.56; S, 8.65. Found: C, 61.87; H, 4.89; N, 7.58; S, 8.50.

6.1.4.30. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3,4-dichlorophenylthiocarbamate, **49**. Yield 64%; mp 164–166 °C (from CH₂Cl₂). IR (KBr) 3316, 1773, 1715 cm⁻¹; ¹H NMR (CDCl₃) δ 2.53 (s, 3H, CH₃); 3.92–4.23 (m, 2H, CH₂N), 4.68–5.03 (m, 2H, CH₂O), 7.10–7.88 (m, 6H, arom. H), 8.12 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₄Cl₂N₂O₃S: C, 52.82; H, 3.45; N, 6.84; S, 7.83. Found: C, 52.74; H, 3.48; N, 6.53; S, 7.54.

6.1.4.31. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) ethyl] 3-chloro-4-methylphenylthiocarbamate, **50**. Yield 30%; mp 136–138 °C (from CH₂Cl₂:MeOH). IR (KBr) 3307, 1770, 1699 cm⁻¹; 1 H NMR (CDCl₃) δ 2.29 (s, 3H, CH₃), 2.49 (s, 3H, CH₃), 3.89–4.20 (m, 2H, CH₂N), 4.70–4.99 (m, 2H, CH₂O), 6.81–7.85 (m, 6H, arom. H), 8.39 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₉H₁₇ClN₂O₃S: C, 58.68; H, 4.41; N, 7.20; S, 8.25. Found: C, 58.35; H, 4.68; N, 7.05; S, 8.56.

6.1.4.32. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) ethyl] 3-chloro-4-nitrophenylthiocarbamate, **51**. Yield 49%; mp 205–207 °C (from Me₂CO). IR (KBr) 3302, 1768, 1697 cm⁻¹; ¹H NMR (DMSO) δ 2.37 (s, 3H, CH₃), 3.80–3.92 (m, 2H, CH₂N), 4.64–4.76 (m, 2H, CH₂O), 7.42–7.68 (m, 6H, arom. H), 11.44 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₄ClN₃O₅S: C, 51.49; H, 3.36; N, 10.01; S, 7.64. Found: C, 51.72; H, 3.35; N, 9.98; S, 7.95.

6.1.4.33. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3-chloro-4-(trifluoromethyl)phenylthiocarbamate, **52**. Yield 33%; mp 133–135 °C (from Et₂O:MeOH). IR (KBr) 3307, 1772, 1698 cm $^{-1}$; 1 H NMR (CDCl $_{3}$) δ 2.51 (s, 3H, CH $_{3}$), 3.93–4.24 (m, 2H, CH $_{2}$ N), 3.72–4.98 (m, 2H, CH $_{2}$ O), 7.23–7.85 (m, 6H, arom. H), 8.51 (br s, 1H, NH, exchangeable). Anal. Calcd for C $_{19}$ H $_{14}$ ClF $_{3}$ N $_{2}$ O $_{3}$ S: C, 51.53; H, 3.19; N, 6.33; S, 7.24. Found: C, 51.18; H, 3.27; N, 6.27; S, 7.44

6.1.4.34. O-[2-(5-tert-butyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) ethyl] 4-methylphenylthiocarbamate, **53**. Yield 22%; mp 118–120 °C (from Et₂O). IR (KBr) 3232, 1763, 1700 cm $^{-1}$; 1 H NMR (CDCl₃) $^{\delta}$ 1.35 (s, 9H, C(CH₃)₃), 2.24 (s, 3H, CH₃Ph), 3.88–4.19 (m, 2H, CH₂N), 4.63–4.92 (m, 2H, CH₂O), 6.89–7.27 and 7.61–7.99 (m, 7H, arom. H). Anal. Calcd for C₂₂H₂₄N₂O₃S: C, 66.64; H, 6.10; N, 7.07; S, 8.09. Found: C, 66.72; H, 6.13; N, 7.27; S, 7.91.

6.1.4.35. O-[2-(5-tert-Butyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) ethyl] 4-chlorophenylthiocarbamate, **54**. Yield 15%; mp 101–103 °C (from Et₂O:MeOH). IR (KBr) 3253, 2963 1771, 1718 cm⁻¹; 1 H NMR (CDCl₃) $^{\delta}$ 1.31 (s, 9H, C(CH₃)₃), 3.94–4.04 (m, 2H, CH₂N), 4.67–4.80 (m, 2H, CH₂O), 6.96–7.24, 7.63–7.67 and 7.75–7.81 (m, 7H, arom. H), 8.59 (br s, 1H, NH, exchangeable). Anal. Calcd for C₂₁H₂₁ClN₂O₃S: C, 60.50; H, 5.08; N, 6.72; S, 7.69. Found: C, 60.78; H, 5.21; N, 6.49; S, 7.44.

6.1.4.36. O-[(2R)-2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl] 4-methylphenylthiocarbamate, **55**. Yield 16%; mp 78–80 °C (from EtOH). [α] 20 _D = -14.1 (c 0.97, CHCl $_3$). IR (KBr) 3246, 1776, 1707 cm $^{-1}$; ¹H NMR (CDCl $_3$) δ 1.44 (d, J = 6.6 Hz, 3H, CH $_3$), 2.09 (s, 3H, CH $_3$ Ph), 4.63–4.79 (m, 1H, CH), 4.81–4.94 (m, 2H, CH $_2$ O), 6.65–6.87 (m, 4H, arom. H), 7.60–7.84 (m, 4H, arom. H), 8.23 (br s, 1H, NH, exchangeable). Anal. Calcd for C $_{19}$ H $_{18}$ N $_2$ O $_3$ S: C, 64.39; H, 5.12; N, 7.90; S, 9.05. Found: C, 64.30; H, 5.44; N, 7.56; S, 8.81.

6.1.4.37. O-[(2R)-2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl] 4-chlorophenylthiocarbamate, **56**. Yield 38%; mp 117–119 °C (from Me₂CO:EtOH). [α]_D²⁰ = -23.2 (c 0.99, CHCl₃). IR (KBr) 3244, 1776, 1707 cm⁻¹; ¹H NMR (CDCl₃) δ 1.50 (d, J = 6.6 Hz, 3H, CH₃), 4.50–5.10 (m, 3H, CH and CH₂O), 6.87–7.28 and 7.68–7.91 (m, 8H, arom. H), 8.99 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₅ClN₂O₃S: C, 57.68; H, 4.03; N, 7.47; S, 8.55. Found: C, 57.92; H, 4.32; N, 7.20; S, 8.56.

6.1.4.38. O-[(2S)-2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl] 4-chlorophenylthiocarbamate, **57**. Yield 22%; mp 118–120 °C (from Et₂O:MeOH). [α] $_{D}^{20}$ = +22.1 (c 1.09, CHCl $_{3}$). IR (KBr) 3244, 1776, 1707 cm $^{-1}$; 1 H NMR (CDCl $_{3}$) δ 1.50 (d, J = 6.6 Hz, 3H, CH $_{3}$), 4.50–5.10 (m, 3H, CH and CH $_{2}$ O), 6.87–7.28 and 7.68–7.91 (m, 8H, arom. H), 8.99 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₈H₁₅ClN₂O₃S: C, 57.68; H, 4.03; N, 7.47; S, 8.55. Found: C, 57.92; H, 4.32; N, 7.20; S, 8.56.

6.1.4.39. (\pm) O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl] 4-methylphenylthiocarbamate, **58**. Yield 40%; mp 141–143 °C (from Et₂O:MeOH). IR (KBr) 3330, 1763, 1695 cm⁻¹. ¹H NMR (CDCl₃) δ 1.50 (d, J = 6.6 Hz, 3H, CH₃), 2.19 (s, 3H, CH₃Ph), 2.50 (s, 3H, CH₃Phtha), 4.39–5.03 (m, 3H, CH and CH₂O), 6.74–7.20 and 7.47–7.74 (m, 7H, arom. H), 8.52 (br s, 1H, NH, exchangeable). Anal. Calcd for C₂₀H₂₀N₂O₃S: C, 65.20; H, 5.47; N, 7.60; S, 8.70. Found: C, 65.48; H, 5.56; N, 7.52; S, 8.52.

6.1.4.40. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl) propyl] 4-chlorophenylthiocarbamate, **59**. Yield 51%; mp 171–173 °C (from Me₂CO:CH₂Cl₂). IR (KBr) 3312, 1763, 1694 cm⁻¹; ¹H NMR (DMSO) δ 1.43 (d, J = 6.6 Hz, 3H, CH₃), 2.50 (s, 3H, CH₃Phtha), 4.29–4.94 (m, 3H, CH and CH₂O), 6.93–7.36 and 7.61–7.80 (m, 7H, arom. H), 11.31 (br s, 1H, NH, exchangeable). Anal. Calcd for C₁₉H₁₇ClN₂O₃S: C, 58.68; H, 4.41; N, 7.20; S, 8.25. Found: C, 58.65; H, 4.25; N, 7.08; S, 8.46.

6.1.4.41. 2-({[2-({[(2,4-Dimethylphenyl)amino]carbonothioyl}oxy) ethyl]amino}carbonyl)benzoic acid, **61**. Yield 16%; mp 145–147 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3310, 3190, 1702, 1654 cm⁻¹; 1 H NMR (DMSO) δ 2.13 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 3.30–3.78 (m, 2H, CH₂N), 4.38–4.76 (m, 2H, CH₂O), 6.98–7.19 and 7.37–7.96 (m, 7H,

arom. H), 8.40 (br s, 1H, CSNH, exchangeable), 10.43 (br s, 1H, CONH, exchangeable), 12.81 (br s, 1H, COOH, exchangeable). Anal. Calcd for $C_{19}H_{20}N_2O_4S$: C, 61.27; H, 5.41; N, 7.52; S, 8.61. Found: C, 61.33; H, 5.41; N, 7.50; S, 8.68.

6.1.4.42. 2-({[2-({[(3,5-Difluorophenyl)amino]carbonothioyl})oxy) ethyl]amino}carbonyl)benzoic acid, **65**. Yield 16%; mp 167–169 °C (from Me₂CO:MeOH). IR (KBr) 3331, 1698, 1650 cm⁻¹; ¹H NMR (DMSO) δ 3.46–3.84 (m, 2H, CH₂N), 4.50–4.84 (m, 2H, CH₂O), 6.74–7.98 (m, 8H, 7 arom. H and CONH), 8.57 (br s, 1H, CSNH, exchangeable), 11.62 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₇H₁₄F₂N₂O₄S: C, 53.68; H, 3.71; N, 7.36; S, 8.43. Found: C, 53.62; H, 4.05; N, 7.48; S, 8.41.

6.1.4.43. 2-({[2-({[(5-Chloro-2-methylphenyl)amino]carbonothioyl}) oxy)ethyl]amino}carbonyl)benzoic acid, **66**. Yield 16%; mp 147–148 °C (from CH₂Cl₂:MeOH). IR (KBr) 3342, 3257, 1701 cm⁻¹; 1 H NMR (DMSO) δ 2.20 (s, 3H, CH₃), 3.35–3.80 (m, 2H, CH₂N), 4.50 (t, J= 6.0 Hz, 2H, CH₂O), 6.95–7.78 (m, 8H, 7 arom. H and CONH), 9.65 (br s, 1H, CSNH, exchangeable), 11.30 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₈H₁₇ClN₂O₄S: C,55.03; H, 4.36; N, 7.13; S, 8.16. Found: C, 54.90; H, 4.41; N, 7.15; S, 7.92.

6.1.4.44. 2-({[2-({[(3-Chloro-4-methylphenyl)amino]carbonothioyl} oxy)ethyl]amino}carbonyl)benzoic acid, **67**. Yield 61%; mp 166–168 °C (from CH₂Cl₂:MeOH). IR (KBr) 3340, 3250, 1688, 1581, 1530 cm⁻¹; ¹H NMR (DMSO) δ 2.30 (s, 3H, CH₃), 3.40–3.80 (m, 2H, CH₂N), 4.63 (t, J = 6.0 Hz, 2H, CH₂O), 7.05–7.95 (m, 8H, 7 arom. H and CONH), 8.78 (br s, 1H, CSNH, exchangeable), 11.80 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₈H₁₇ClN₂O₄S: C, 55.03; H, 4.36; N, 7.13; S, 8.16. Found: C, 55.04; H, 4.36; N, 7.10; S, 8.14.

6.1.4.45. 2-({[2-({[(2-Methoxy-5-methylphenyl)amino]carbonothioyl}) oxy)ethyl]amino]carbonyl)benzoic acid, **68.** Yield 28%; mp 143–145 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3338, 3300, 1689, 1666 cm⁻¹; 1 H NMR (DMSO) δ 2.20 (s, 3H, CH₃), 3.29–3.87 (m, 5H, CH₂N and CH₃O), 4.32–4.73 (m, 2H, CH₂O), 6.83–7.98 (m, 7H, arom. H), 8.47 (br s, 1H, CSNH, exchangeable), 10.39 (br s, 1H, CONH, exchangeable), 13.07 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₉H₂₀N₂O₅S: C, 58.75; H, 5.19; N, 7.21; S, 8.25. Found: C, 58.77; H, 5.20; N, 7.24; S, 8.02.

6.1.4.46. 2-({[2-({[(3,4-Dimethoxyphenyl)amino]carbonothioyl})oxy) ethyl]amino}carbonyl)benzoic acid, **69**. Yield 31%; mp 147–149 °C (from Et₂O:CH₂Cl₂). IR (KBr) 3363, 3287, 1695, 1637 cm⁻¹; 1 H NMR (DMSO) δ 3.48–4.01 (m, 8H, CH₂N and 2 CH₃O), 4.34–4.80 (m, 2H, CH₂O), 6.65–7.96 (m, 7H, arom. H), 8.53 (br s, 1H, CSNH, exchangeable), 10.25 (br s, 1H, CONH, exchangeable), 13.01 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₉H₂₀N₂O₆S: C, 56.43; H, 4.98; N, 6.93; S, 7.93. Found: C, 56.67; H, 4.98; N, 6.91; S, 8.13.

6.1.4.47. 2-({[2-({[(2,3,4-Trichlorophenyl)amino]carbonothioyl})oxy}) ethyl]amino}carbonyl)benzoic acid, **71.** Yield 35%; mp 81–82 °C (from Me₂CO). IR (KBr) 3142, 1712 cm⁻¹; 1 H NMR (DMSO) δ 3.32–3.78 (m, 2H, CH₂N), 4.43–4.75 (m, 2H, CH₂O), 7.08–7.98 (m, 6H, arom. H), 8.44 (br s, 1H, CONH, exchangeable), 11.24 (br s, 1H, CSNH, exchangeable), 13.05 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₇H₁₃Cl₃N₂O₄S: C, 45.60; H, 2.93; N, 6.26; S, 7.16. Found: C, 45.59; H, 3.02; N, 6.46; S, 7.41.

6.1.4.48. 2-({[(1R)-1-Methyl-2-({[(4-methylphenyl)amino]carbonothioyl}oxy)ethyl]amino}carbonyl)benzoic acid, **73.** Yield 16%; mp 157–159 °C (from Me₂CO:Et₂O). [α] $_{0}^{20}$ = -11.9 (c 0.91, Me₂CO). IR (KBr) 3322, 3237, 1696, 1650 cm⁻¹; 1 H NMR (DMSO) δ 0.99–1.19 (m, 3H, CH₃), 2.16 (s, 3H, CH₃Ph), 4.13–4.50 (m, 3H, CH₂O and CH), 6.97–7.23, 7.35–7.52 and 7.68–7.75 (m, 8H, arom. H), 8.26 (br s, 1H,

CONH, exchangeable), 10.93 (br s, 1H, CSNH, exchangeable), 12.88 (br s, 1H, COOH, exchangeable). Anal. Calcd for $C_{19}H_{20}N_2O_4S$: C, 61.27; H, 5.41; N, 7.52; S, 8.61. Found: C, 61.05; H, 5.16; N, 7.51; S, 8.71.

6.1.4.49. 2-({[(1S)-1-Methyl-2-({[(4-methylphenyl)amino]carbonothioyl}oxy)ethyl]amino}carbonyl)benzoic acid, **74.** Yield 26%; mp 163–165 °C (from Me₂CO:Et₂O). [α] $_{D}^{20}$ = +11.3 (c 0.97, Me₂CO). IR (KBr) 3322, 3237, 1696, 1650 cm $^{-1}$; ¹H NMR (DMSO) δ 0.99–1.19 (m, 3H, CH₃), 2.16 (s, 3H, CH₃Ph), 4.13–4.50 (m, 3H, CH₂O and CH), 6.97–7.23, 7.35–7.52 and 7.68–7.75 (m, 8H, arom. H), 8.26 (br s, 1H, CONH, exchangeable), 10.93 (br s, 1H, CSNH, exchangeable), 12.88 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₉H₂₀N₂O₄S: C, 61.27; H, 5.41; N, 7.52; S, 8.61. Found: C, 61.05; H, 5.16; N, 7.51; S, 8.71.

6.1.4.50. 2-({[(1R)-2-({[(4-Chlorophenyl)amino]carbonothioyl})oxy})-1-methylethyl]amino}carbonyl)benzoic acid, **75**. Yield 24%; mp 158–160 °C (from Me₂CO:Et₂O). [α] $_{0}^{20}$ = -21.1 (c 0.98, Me₂CO). IR (KBr) 3285, 1702, 1637 cm $^{-1}$; 1 H NMR (DMSO) δ 0.95–1.17 (m, 3H, CH₃), 4.10–4.52 (m, 3H, CH₂O and CH), 6.91–7.79 (m, 8H, arom. H), 8.29 (br s, 1H, CONH, exchangeable), 11.17 (br s, 1H, CSNH, exchangeable), 12.90 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₈H₁₈ClN₂O₄S: C, 55.03; H, 4.36; N, 7.13; S, 8.16. Found: C, 55.19; H, 4.65; N, 7.43; S, 8.26.

6.1.4.51. 2-({[(1S)-2-({[(4-Chlorophenyl)amino]carbonothioyl})oxy})-1-methylethyl]amino}carbonyl)benzoic acid, **76**. Yield 21%; mp 147–149 °C (from Me₂CO). [α] $_{0}^{20}$ = +20.1 (c 1.39, Me₂CO). IR (KBr) 3285, 1702, 1637 cm⁻¹; $_{1}^{1}$ H NMR (DMSO) $_{0}$ 0.95–1.17 (m, 3H, CH₃), 4.10–4.52 (m, 3H, CH₂O and CH), 6.91–7.79 (m, 8H, arom. H), 8.29 (br s, 1H, CONH, exchangeable), 11.17 (br s, 1H, CSNH, exchangeable), 12.90 (br s, 1H, COOH, exchangeable). Anal. Calcd for C₁₈H₁₈ClN₂O₄S: C, 55.03; H, 4.36; N, 7.13; S, 8.16. Found: C, 55.19; H, 4.65; N, 7.43; S, 8.26.

6.2. Virology: materials and methods

The biological evaluation of the synthesized compounds was performed according to the previously reported procedures [12,43].

6.3. Molecular modelling

The molecular structures of 5, 23, 28-30, 33, 34, 49-52, 54, 56 and 57 were built by Insight II (Builder module), parameterized according to CVFF force field [44] and their RT complexes were calculated using Autodock 3.05 [40]. After the removal of the inhibitor from the crystal structure of RT/VII complex (PDB code 2VG5) [9], hydrogen atoms were added and partial charges were assigned according to CVFF force field (Insight II, biopolymer module). The ligand "root" was defined automatically and all bonds were allowed to freely rotate. A $50 \times 50 \times 50$ grid (grid spacing 0.375 Å) was centred on the NNBS and electrostatic and affinity maps for each atom type of the ligand were calculated. The docking search was performed over 256 conformers using the Genetic Algorithm Local Search protocol as implemented in Autodock (population size: 100; rate of gene mutation: 0.02; rate of crossover: 0.8). The docking poses were clustered (rmsd: 2.0 Å) and the best conformation of the low energy, highest populated cluster was selected as the binding conformation. The resulting models were energy-minimized by CNS [45], performing a cycle of simulated annealing (starting temperature 1000 K) followed by 120 cycles of Powell minimization. Model analyses were performed using the CCP4 program suite [46]. All the calculations were carried out on Silicon Graphic Indigo2 and Origin 200 workstations.

Acknowledgements

This work was supported by MURST (Cofinanziamento Nazionale), CNR (Rome) and Ministero Italiano della Salute – Istituto Superiore di Sanità (grant no 40D.46). Fondazione Banca Carige is gratefully acknowledged for financially supporting SC. The authors thank Mr. O. Gagliardo for the microanalyses, Mr. F. Tuberoni, Dr. C. Rossi and Dr. R. Raggio for the IR and NMR spectra.

References

- H.C. Castro, N.I. Loureiro, M. Pujol-Luz, A.M. Souza, M.G. Albuquerque, D.O. Santos, L.M. Cabral, I.C. Frugulhetti, C.R. Rodrigues, Curr. Med. Chem. 13 (2006) 313–324 and references therein.
- [2] L.A. Kohlstaedt, J. Wang, J.M. Friedman, P.A. Rice, T.A. Steitz, Science 256 (1992) 1783–1790.
- [3] J. Ren, J. Diprose, J. Warren, R.M. Esnouf, L.E. Bird, S. Ikemizu, M. Slater, J. Milton, J. Balzarini, D.I. Stuart, D.K. Stammers, J. Biol. Chem. 275 (2000) 5633–5639.
- [4] J. Ren, C. Nichols, L.E. Bird, T. Fujiwara, H. Sugimoto, D.I. Stuart, D.K. Stammers, J. Biol. Chem. 275 (2000) 14316–14320.
- [5] J. Lindberg, S. Sigurdsson, S. Lowgren, H.O. Andersson, C. Sahlberg, R. Noreen, K. Fridborg, H. Zhang, T. Unge, Eur. J. Biochem. 269 (2002) 1670–1677.
- [6] R. Esnouf, J. Ren, C. Ross, Y. Jones, D. Stammers, D. Stuart, Nat. Struct. Biol. 2 (1995) 303–308.
- [7] R.M. Esnouf, J. Ren, A.L. Hopkins, C.K. Ross, E.Y. Jones, D.K. Stammers, D.I. Stuart, Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 3984–3989.
- [8] K. Das, A.D.J. Clark, P.J. Lewi, J. Heeres, M.R. De Jonge, L.M. Koymans, H.M. Vinkers, F. Daeyaert, D.W. Ludovici, M.J. Kukla, B. De Corte, R.W. Kavash, C.Y. Ho, H. Ye, M.A. Lichtenstein, K. Andries, R. Pauwels, M.P. De Béthune, P.L. Boyer, P. Clark, S.H. Hughes, P.A. Janssen, E. Arnold, J. Med. Chem. 47 (2004) 2550–2560.
- [9] A. Spallarossa, S. Cesarini, A. Ranise, M. Ponassi, U. Unge, M. Bolognesi, Biochem. Biophys. Res. Commun. 365 (2008) 764–770.
- [10] C.A. Shaw-Reid, B. Feuston, V. Munshi, K. Getty, J. Krueger, D.J. Hazuda, M.A. Parniak, M.D. Miller, D. Lewis, Biochemistry 44 (2005) 1595–1606.
- [11] N. Sluis-Cremer, N.A. Temiz, I. Bahar, Curr. HIV Res. 2 (2004) 323-332.
- [12] A. Ranise, A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M. La Colla, G. Sanna, M. Murreddu, G. Collu, B. Busonera, M.E. Matongiu, A. Pani, P. La Colla, R. Loddo, J. Med. Chem. 48 (2005) 3858–3873.
- [13] F.W. Bell, A.S. Cantrell, M. Hogberg, S.R. Jaskunas, N.G. Johansson, C.L. Jordan, M.D. Kinnick, P. Lind, J.M. Morin Jr., R. Noreen, B. Oberg, J.A. Palkowitz, C.A. Parrish, P. Pranc, C. Sahlberg, R.J. Ternansky, R.T. Vasileff, L. Vrang, S.J. West, H. Zhang, X.-X. Zhou, J. Med. Chem. 38 (1995) 4929–4936.
- [14] C. Ahgren, K. Backro, F.W. Bell, A.S. Cantrell, M. Clemens, J.M. Colacino, J.B. Deeter, P. Engelhardt, M. Hogberg, S.R. Jaskunas, N.G. Johansson, C.L. Jordan, J.S. Kasher, M.D. Kinnick, P. Lind, C. Lopez, J.M. Morin Jr., M.A. Muesing, R. Noreen, B. Oberg, C.J. Paget, J.A. Palkowitz, C.A. Parrish, P. Pranc, M.K. Rippy, C. Rydergard, C. Sahlberg, S. Swanson, R.J. Ternansky, T. Unge, R.T. Vasileff, L. Vrang, S.J. West, H. Zhang, X.-X. Zhou, Antimicrob. Agents Chemother. 39 (1995) 1329–1335.
- [15] A.S. Cantrell, P. Engelhardt, M. Hogberg, S.R. Jaskunas, N.G. Johansson, C.L. Jordan, J. Kangasmetsa, M.D. Kinnick, P. Lind, J.M. Morin Jr., M.A. Muesing, R. Noreen, B. Oberg, P. Pranc, C. Sahlberg, R.J. Ternansky, R.T. Vasileff, L. Vrang, S.J. West, H. Zhang, J. Med. Chem. 39 (1996) 4261–4274.
- [16] R. Vig, C. Mao, T.K. Venkatachalam, L. Tuel-Ahlgren, E.A. Sudbeck, F.M. Uckun, Bioorg. Med. Chem. 6 (1998) 1789–1797.
- [17] C. Mao, R. Vig, T.K. Venkatachalam, E.A. Sudbeck, F.M. Uckun, Bioorg. Med. Chem. Lett. 8 (1998) 2213–2218.

- [18] C. Mao, E.A. Sudbeck, T.K. Venkatachalam, F.M. Uckun, Bioorg. Med. Chem. Lett. 9 (1999) 1593–1598.
- [19] C. Sahlberg, R. Noréen, P. Engelhardt, M. Högberg, J. Kangasmetsä, L. Vrang, H. Zhang, Bioorg. Med. Chem. Lett. 8 (1998) 1511–1516.
- [20] F.M. Uckun, C. Mao, S. Pendergrass, D. Maher, D. Zhu, L. Tuel-Ahlgren, T.K. Venkatachalam, Bioorg, Med. Chem. Lett. 9 (1999) 2721–2726.
- [21] F.M. Uckun, S. Pendergrass, D. Maher, D. Zhu, L. Tuel-Ahlgren, C. Mao, T.K. Venkatachalam, Bioorg. Med. Chem. Lett. 9 (1999) 3411–3416.
- [22] F.M. Uckun, D. Erbeck, H. Tibbles, S. Qazi, T.K. Venkatachalam, Arzneimittelforschung 57 (2007) 164–170.
- [23] M. Högberg, C. Sahlberg, P. Engelhardt, R. Noréen, J. Kangasmetsä, N.G. Johansson, B. Öberg, L. Vrang, H. Zhang, B.-L. Sahlberg, T. Unge, S. Lövgren, K. Fridborg, K. Bäckbro, J. Med. Chem. 42 (1999) 4150–4160.
- [24] M. Högberg, P. Engelhardt, L. Vrang, H. Zhang, Bioorg. Med. Chem. Lett. 10 (2000) 265–268.
- [25] Y. Dong, T.K. Venkatachalam, R.K. Narla, V.N. Trieu, E.A. Sudbeck, F.M. Uckun, Bioorg. Med. Chem. Lett. 10 (2000) 87–90 and references therein.
- [26] G. Campiani, M. Fabbrini, E. Morelli, V. Nacci, G. Greco, E. Novellino, G. Maga, S. Spadari, A. Bergamini, E. Faggioli, I. Uccella, F. Bolacchi, S. Marini, M. Coletta, C. Fracasso, S. Caccia, Antiviral Chem. Chemother. 11 (2000) 141–155.
 [27] T.K. Venkatachalam, E.A. Sudbeck, C. Mao, F.M. Uckun, Bioorg, Med. Chem.
- Lett. 10 (2000) 2071–2074.

 [28] TK Venkatachalam C Mao FM Hickum Biogra Med Chem 12 (2004)
- [28] T.K. Venkatachalam, C. Mao, F.M. Uckun, Bioorg. Med. Chem. 12 (2004) 4275–4284.
- [29] O.J. D'Cruz, F.M. Uckun, Curr. HIV Res. 4 (2006) 329-345.
- [30] O.J. D'Cruz, F.M. Uckun, J. Antimicrob. Chemother. 57 (2006) 411–423 and references therein.
- [31] O.J. D'Cruz, F.M. Uckun, J. Enzyme Inhib. Med. Chem. 21 (2006) 329-350.
- [32] V. Ravichandran, R.K. Agrawal, Bioorg. Med. Chem. Lett. 17 (2007) 2197–2202.
- [33] S. Cesarini, A. Spallarossa, A. Ranise, P. Fossa, P. La Colla, G. Sanna, G. Collu, R. Loddo, Bioorg. Med. Chem. 16 (2008) 4160–4172.
- [34] S. Cesarini, A. Spallarossa, A. Ranise, O. Bruno, P. La Colla, B. Secci, G. Collu, R. Loddo, Bioorg. Med. Chem. 16 (2008) 4173-4185.
- [35] A. Rao, A. Carbone, A. Chimirri, E. De Clercq, A.M. Monforte, P. Monforte, C. Pannecouque, M. Zappala, Il Farmaco 57 (2002) 747–751.
- [36] A. Rao, J. Balzarini, A. Carbone, A. Chimirri, E. De Clercq, A.M. Monforte, P. Monforte, C. Pannecouque, M. Zappala, Il Farmaco 59 (2004) 33–39.
- [37] G. La Regina, A. Coluccia, F. Piscitelli, A. Bergamini, A. Sinistro, A. Cavazza, G. Maga, A. Samuele, S. Zanoli, E. Novellino, M. Artico, R. Silvestri, J. Med. Chem. 50 (2007) 5034–5038.
- [38] G. Maass, U. Immendoerfer, B. Koenig, U. Leser, B. Mueller, R. Goody, E. Pfaff, Antimicrob. Agents Chemother. 37 (1993) 2612–2617.
- [39] C. Tantillo, J. Ding, A. Jacobo-Molina, R.G. Nanni, P.L. Boyer, S.H. Hughes, R. Pauwels, K. Andries, P.A. Janssen, E. Arnold, J. Mol. Biol. 243 (1994) 369–387.
- [40] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, J. Comput. Chem. 19 (1998) 1639–1662.
- [41] J. Ren, R.M. Esnouf, A.L. Hopkins, J. Warren, J. Balzarini, D.I. Stuart, D.K. Stammers, Biochemistry 37 (1998) 14394–14403.
- [42] A. Carocci, A. Catalano, F. Corbo, A. Duranti, R. Amoroso, C. Franchini, G. Lentini, V. Tortorella, Tetrahedron: Asymmetry 11 (2000) 3619–3634.
- [43] A. Ranise, A. Spallarossa, S. Schenone, O. Bruno, F. Bondavalli, L. Vargiu,
 T. Marceddu, M. Mura, P. La Colla, A. Pani, J. Med. Chem. 46 (2003) 768–781.
- [44] P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, A.T. Hagler, Proteins 4 (1988) 31–47.
- [45] A.T. Brunger, P.D. Adams, G.M. Clore, W.L. Delano, P. Gros, R.W. Grosse-Kunstleve, S. Jiangj, J. Kuszewski, N. Nilges, N.S. Pannu, R.J. Read, L.M. Rice, T. Simonson, G.L. Warren, Acta Crystallogr. D54 (1998) 905–921.
- [46] Collaborative Computational Project, Number 4, Acta Crystallogr. D50 (1994) 760–763.
- [47] P.J. Kraulis, J. Appl. Crystallogr. 24 (1991) 946–950.
- [48] R.M. Esnouf, J. Mol. Graph. Model. 15 (1997) 132-134.